Масс-спектрометрия
Рефераты >> Химия >> Масс-спектрометрия

Определение состава вещества – качественный и количественный анализ. Определение структуры молекулы и энергетических характеристик. Все большее применение находит масс-спектрометрия в химии, особенно органической, а также в биологии. Метод поставляет информацию о том, какое вещество или смесь каких веществ представляют собой исследуемый образец (качественный анализ) и какова концентрация веществ в смеси (количественный анализ). В ходе анализа иногда также представляется возможным выяснить, какие фрагменты и в какой последовательности образуют молекулу исследуемого вещества. Так, при ионизации диэтилового эфира помимо молекулярного иона СН3СН2ОСН2СН3+ образуются осколочные ионы. Наличие в масс-спектре ионов с массой, меньшей молекулярного на 15 а.е.м., говорит о содержании в молекуле метильных групп СН3 . Ион с массой 45 является фрагментом, образовавшимся при отрыве этильной группы С2Н5 (m / z = 29), соответствующий ион которой также присутствует в масс-спектре. В некоторых случаях молекулы исследуемого вещества термически нестабильны. Это означает, что если нагревать твердый или жидкий образец для получения пара, то испарение будет сопровождаться термодеструкцией молекул. Это приведет к искажению информации об изначальном составе образца. Кроме того, при электронном ударе не всегда образуется молекулярный ион, что значительно затрудняет определение брутто-формулы молекулы. Поэтому при исследовании органических и особенно биологических молекул иногда приходится использовать более мягкие, чем электронный удар, методы ионизации и/или отличные от нагрева методы получения свободных молекул исследуемого вещества, то есть перевода молекул в газовую фазу.

Методом лазерной десорбции с помощью импульсного лазерного пучка облучается поверхность образца. При этом, избегая нагрева, удается заставить часть молекул перейти в газовую фазу. Включаемый с небольшой задержкой электронный луч ионизирует вырванные молекулы, и полученные ионы вытягиваются электрическим полем в масс-анализатор. Следует отметить, что, меняя интенсивность лазерного луча, можно тем самым варьировать глубину проникновения в глубь образца, особенно слоистого, а также изменять характер фрагментационных процессов.

В некоторых случаях, особенно при изучении полимерных и биологических молекул, приходится растворять вещество в относительно инертных растворителях, таких, как глицерин, тиоглицерин. Образуемая матрица бомбардируется потоком быстрых атомов инертного газа, что приводит к вырыванию из матрицы молекулярных и фрагментарных ионов исследуемого вещества, которые затем разделяются по массе. В этом состоит метод бомбардировки быстрыми атомами, объединяющий "мягкое" испарение и "мягкую" ионизацию.

Кроме перечисленных приемов известны также полевая десорбция и полевая ионизация, в которых используется электрическое поле высокой напряженности порядка 108 B/см, под действием которого исследуемое вещество в виде молекул или ионов отрывается от образца.

Еще одним мягким способом ионизации является так называемая химическая ионизация. Суть ее заключается в том, что с помощью обычного электронного удара ионизируют не исследуемый газ, а газ-реагент (метан, изобутан, аммиак). Образовавшиеся ионы-реагенты при столкновении с исследуемыми молекулами охотно их ионизируют. Важнейшими ионами-реагентами, образующимися в результате электронного удара, например, метана, являются ионы CH3+ и C2H5+. Последующие реакции между положительно заряженными ионами-реагентами ХН+ и молекулами М образца идут в основном по пути протонирования:

М + ХН+ → МН+ + Х

При таком способе ионизации образующийся ион состава МН+ несет информацию о брутто-формуле исследуемой молекулы, ионизация которой другими способами приводит к образованию только осколочных ионов.

При достаточно высоких температурах может происходить термическая ионизация молекул, когда вещество переходит в газовую фазу частично в виде ионов, как положительных, так и отрицательных. Образование ионов в данном случае происходит за счет тепловой энергии, которой обладают молекулы при высоких температурах. Газовая фаза в этом случае представляет смесь нейтральных частиц (атомов и молекул) и заряженных (ионов), и в газовой фазе может устанавливаться ион-молекулярное равновесие. Изучение констант ион-молекулярного равновесия позволяет определять величины сродства к электрону и потенциалы ионизации молекул, энергии разрыва химических связей и энергии образования ионов. Следует отметить, однако, что концентрация ионов, образующихся при термической ионизации, на три-пять порядков ниже концентрации нейтральных частиц. Масс-спектрометрические измерения позволяют также определять такие термодинамические характеристики, как константы равновесия, энтальпии и энтропии химических реакций, энтальпии образования газообразных веществ.

По-видимому, самым ярким и эффективным применением масс-спектрометрии в химическом анализе смесей явилась разработка метода, объединяющего два мощнейших аналитических инструмента: хроматографию и масс-спектрометрию, что привело к созданию хромато-масс-спектрометрического метода. В этом методе образец (исследуемая газовая смесь) смешивается с газом-носителем (обычно гелий) на входе в хроматограф. Смесь проходит через длинную капиллярную хроматографическую колонку. Скорость диффузии компонентов смеси сильно зависит от химической природы каждого из них, вследствие чего происходит разделение смеси. Образуемые на выходе хроматографа порции разделенных компонентов смеси поступают последовательно один за другим в масс-спектрометр. Таким

образом, получается набор масс-спектров, каждый из которых соответствует индивидуальному компоненту смеси. Использование вместо газового хроматографа жидкостного позволило изучать не только газовые, но и жидкие смеси. Метод жидкостной хроматомасс-спектрометрии широко используется для анализа нефти и других сложных органических смесей. Рис. 6 иллюстрирует применение данного метода для анализа состава промышленных газовых выбросов.

Заключение.

Масс-спектрометрия в настоящее время является одним из наиболее информативных, чувствительных и надежных аналитических методов. Любая крупная физическая, химическая или биологическая лаборатория имеет в своем распоряжении масс-спектрометр, ориентированный на те или иные специфические исследования. Совершенствование техники позволило создать приборы, способные исследовать молекулы с огромными массами порядка 100 000 а.е.м. и выше, что, несомненно, открывает просторы для изучения таких сложных биологических молекул, как белки, а также длинноцепочечные органические полимеры. Масс-спектрометрия способна обнаруживать примеси на уровне 0,0001% и ниже, что актуально при контроле синтеза высокочистых веществ, например в микроэлектронике. Компактность некоторых типов масс-спектрометров и вакуумные условия работы предопределили их широкое применение для анализа образцов в космическом пространстве.


Страница: