Пенообразование в растворах поверхностно-активных веществ
Рефераты >> Химия >> Пенообразование в растворах поверхностно-активных веществ

Третья сила, действующая на пены, менее очевидна. Она возникает потому, что давление газа внутри пузырька обратно пропорционально его размеру. Вследствие этого в маленьких пузырьках давление больше, чем в больших; поэтому происходит транспорт газа через жидкость от маленьких пузырьков к большим. Таким образом, существует возможность разрушения пены вообще без разрыва пленок. Перенос газа через дисперсионную среду пропорционален растворимости газа в жидкости, поэтому устойчивость пены из пузырьков аргона выше устойчивости пены из пузырьков углекислого газа при условии, что пены получают из раствора одного и того ПАВ и при соблюдении прочих одинаковых условия.

Четвертая сила, действующая на пены, проявляется в очень стабильных пенах, в которых образуются очень тонкие пленки. В них происходит перекрывание двойных электрических слоев, создающихся адсорбционными слоями ПАВ на границе жидкость-воздух. В результате перекрывания ДЭС возникает отталкивание, препятствующее дальнейшему утончению пленки. Это отталкивание проявляется в зависимости от ионной силы системы на расстояниях от 10 до 100 нм. Недавно было установлено, что даже неионные ПАВ сообщают поверхности небольшой отрицательный заряд, происхождение которого до сих пор остается дискуссионным.

Добавление соли сжимает двойной электрический слой, что приводит к потери устойчивости пен. В то же время, как будет показано ниже, введение соли увеличивает критический параметр упаковки ионного ПАВ и, следовательно, влияет на поверхностную активность. В большинстве случаев это способствует пенообразованию. Таким образом, при добавлении солей проявляются два противоположных эффекта; публикации по этому вопросу весьма противоречивы.

Наконец, фактором, имеющим очевидное влияние на время жизни пен, является вязкость жидкости. Естественно, что очень вязкие пены обладают повышенной устойчивостью, например пены для матрацев, взбитые сливки или крем для бритья. Во многих случаях, когда поверхностные слои на границе вода-воздух имеют большую вязкость, совсем не нужно, чтобы большой вязкостью обладала дисперсионная среда. Это наблюдается в том случае, когда в системе образуются ламелярные жидкокристаллические фазы. Они концентрируются на поверхности вода-воздух, локально повышая вязкость и, следовательно, устойчивость пен.

Использование концепции критического параметра упаковки

Пенообразующая способность тесно связана с критическим параметром упаковки поверхностно-активного вещества. При увеличении КПУ поверхностно-активное вещество формирует на поверхности вода - воздух плотно заполненные адсорбционные слои с высокой когезией. Это обеспечивает хорошую когезию и в жидких пленках, приводя к повышению поверхностной упругости и вязкости, что определяет высокую пенообразующую способность и стабильность пены. Согласно этому механизму, пенообразующая способность должна непрерывно увеличиваться с ростом КПУ.

Однако пенообразующая способность зависит не только от когезии монослоев ПАВ. Другим, не менее важным фактором является вероятность самопроизвольного образования и роста «дырок» в пенной пленке. Термические и механические флуктуации в пенной пленке приводят к образованию неустойчивых дырок молекулярного размера. Образование дырок происходит легче в системах, содержащих ПАВ с большими значениями КПУ, потому что дырки имеют большую кривизну, и энергия образования дырки для систем ПАВ с низкими значениями КПУ гораздо больше, чем для систем ПАВ с высокими значениями КПУ. Согласно этим представлениям, пенообразующая способность и устойчивость пен должны уменьшаться при увеличении КПУ.

Таким образом, увеличение КПУ системы ПАВ оказывает на пену двоякое действие: когезия в пленке увеличивается, что повышает пенообразующую способность, и вероятность образования дырки увеличивается,. Поэтому можно ожидать, что пенообразующая способность проходит через максимум по мере изменения КПУ, что схематически показано на рис. 6.

Рис. 5. а — Самопроизвольное образование дырок в пенной пленке вследствие термических или механических флуктуации, б — ПАВ с большими значениями КПУ способствуют образованию дырок

Рис. 6. По мере изменения КПУ в пене проявляются два противоположно действующих эффекта, вследствие чего при некотором значении КПУ пенообразующая способность имеет максимум

В точке максимума оба фактора уравновешивают друг друга. При более высоких значениях КПУ преобладает вероятность образования дырок, а при низких — нарушается когезия монослоев ПАВ в пленке. Это общая закономерность проиллюстрирована ниже на нескольких примерах.

Значение КПУ неионных ПАВ легко варьировать изменением длины полиок-сиэтиленовой цепи. Рис. 7 отражает пенообразующую способность водных растворов этоксилированных нонилфенолов NP-En. Отчетливый максимум наблюдается при содержании полиоксиэтиленовых групп в составе поверхностно-активного компонента 75-85 мас.%, что соответствует НС-Е При использовании NP-Ew с небольшим числом оксиэтиленовых групп доминирует образование дырок в пенных пленках; а для NP-Ew с числом оксиэтиленовых групп больше 20 уменьшение пенообразующей способности связано с отсутствием хорошей когезии между монослоями ПАВ, формирующими пленку.

Значения КПУ неионных ПАВ можно также варьировать путем изменения температуры. При низких температурах полиоксиэтиленовые цепи принимают развернутую конформацию, что приводит к увеличению размера полярной «головки» ПАВ и, следовательно, к уменьшению КПУ. При повышенных температурах полиоксиэтиленовые цепи принимают более компактную форму, что приводит к увеличению значений КПУ. Максимальная пенообразующая способность достигается, согласно предложенному механизму, при температурах ниже точки помутнения.

Величину КПУ ионных ПАВ можно варьировать изменением длины углеводородных цепей. На этом рисунке представлена зависимость объема пены, полученной из водных растворов алкилсульфатов при 60 °С, от числа атомов углерода в алкильной цепи. Максимальный объем пены получается в случае алкилсульфата, содержащего в алкильной цепи 16 атомов углерода. Для ПАВ с более короткими алкильными цепями уменьшение пенообразующей способности преимущественно определяется нарушением когезии между монослоями ПАВ. Тогда как в случае ПАВ с более длинными алкильными цепями разрушение пены происходит по механизму образования дырок. Опыты проводились при температуре 60 °С, чтобы все системы находились заведомо выше точки Крафта.

Рис. 7. Зависимость высоты столба пены от содержания оксиэтиленовых цепей в молекуле ПАВ. Этоксилированные алкил фенолы обладают максимальной пенообразующей способностью при 75%-ном содержании в молекуле ПАВ оксиэтиленовых групп. Данные получены методом Росса-Майлса

Рис. 8. Зависимость объема пены от числа атомов углерода в алкильной цепи алкилсульфатов при 60°С. Объем пены максимален для гексадецилсульфата


Страница: