Пенообразование в растворах поверхностно-активных веществ
Рефераты >> Химия >> Пенообразование в растворах поверхностно-активных веществ

Значения КПУ систем, содержащих анионные ПАВ, чувствительны также к добавкам неионных длинноцепочечных дифильных веществ - жирных кислот и спиртов. Эти вещества увеличивают значение КПУ системы в целом, что приводит к увеличению пенообразующей способности по сравнению с исходной системой с небольшими значениями КПУ. Видно, что пенообразование при стабилизации водными растворами мыл зависит от рН. При высоких значениях рН жирные кислоты диссоциированы. При этом образуются мыла с низкими значениями КПУ, что сопровождается снижением пенообразующей способности из-за нарушения когезии монослоев ПАВ в пенных пленках. При низких рН, когда ПАВ представлено в основном недиссоциированными жирными кислотами, пенообразующая способность также невелика. Но в этом случае повышается вероятность возникновения дырок из-за больших значений КПУ. Максимальная пенообразующая способность сдвигается в сторону больших значений рН для длинных алкильных цепей. При удлинении алкильной цепи значение КПУ увеличивается, и для баланса двух указанных сил требуются ПАВ с большим зарядом.

Таким образом, пенообразование контролируется параметром КПУ системы, так что максимальная пенообразующая способность достигается при промежуточных значениях КПУ. Однако такой подход содержит некоторые «ловушки», что было обнаружено, например, при изучении влияния на пены солей. В системах, содержащих ионные ПАВ, добавки солей приводят к увеличению КПУ. И для систем с низкими значениями КПУ пенообразование при введении солей должно увеличиваться. Но это происходит не всегда, поскольку при увеличении концентрации соли понижается отталкивание двойных электрических слоев между двумя поверхностями жидкость-газ в пленках, что приводит к уменьшению и пенообразующей способности, и устойчивости пен.

Рис. 9. Зависимость высоты столба пены от рН растворов жирных кислот при 50 0C Пенооб-разующая способность имеет максимум при промежуточных значениях рН.

Влияние полимеров на устойчивость пен

Водорастворимые полимеры входят в состав многих технологических композиций на основе водных растворов поверхностно-активных веществ, поэтому важно знать, как взаимодействие между полимерами и ПАВ влияет на устойчивость пен. Чтобы разобраться в этой проблеме, рассмотрим систему, в состав которой входят поливинилпирролидон и додецилсульфат натрия.

При концентрациях ниже ККМ, когда поверхностно-активное вещество не образует ассоциатов в объеме раствора, полимер и ПАВ сильно взаимодействуют на поверхности, о чем свидетельствует понижение поверхностного натяжения. Оно понижается вследствие усиления адсорбции ПАВ, индуцированного присутствием полимера. В этих условиях устойчивость пен при добавлении полимера увеличивается. По-видимому, полимер локализуется вблизи полярных групп ПАВ, при этом увеличивается поверхностная вязкость и стерическое отталкивание между двумя поверхностями в пенной пленке, что обусловливает повышение стабильности пены.

Когда концентрация становится выше ККМ, полимер начинает ассоциироваться с мицеллами ПАВ в водной фазе и десорбируется с поверхности. Это приводит к нехватке поверхностно-активного вещества на поверхности для обеспечения поверхностной упругости, необходимой для стабилизации пенных пленок, тогда как в отсутствие полимера поверхность в данной концентрационной области насыщена поверхностно-активным компонентом. Такая ситуация отвечает понижению устойчивости пены при введении полимера.

Наконец, при достаточно высокой при концентрации ПАВ, когда весь полимер, присутствующий в системе, расходуется на образование комплекса полимер-мицелла, устойчивость пены по сравнению с системой без полимера увеличивается. Причина повышения устойчивости пены при возникновении комплексов полимер-мицелла заключается в повышении объемной и поверхностной вязкостей, что замедляет дренаж пены.

Стабилизация пен частицами и белками

Твердые частицы и поверхностно-активные высокомолекулярные вещества, например белки, составляют две другие группы стабилизаторов пен в водных растворах. Известны два различных механизма стабилизации пен твердыми частицами. Об одном из них уже упоминалось выше при обсуждении дренажа пен. Диспергированные частицы захватываются каналами, при этом скорость дренажа понижается. Этот механизм осуществим, когда частицы не обладают сродством к поверхности жидкость-воздух и полностью диспергированы в дисперсионной среде.

По второму механизму частицы действуют как поверхностно-активные компоненты. Для гидрофильных частиц это достигается модифицированием путем адсорбции или химического «пришивания» к поверхности частиц гидрофобных фрагментов. Слишком высокая гидрофобность частиц приведет к их осаждению. Если получить частично гидрофобизированные частицы, они будут вести себя как поверхностно-активные вещества и проявлять сродство к поверхности вода-воздух. Такие системы образуют очень устойчивые пены. Наилучшая стабилизация достигается, когда краевой угол воды близок к 90°. В этом случае одна половина частицы погружена в жидкость, в другая находится на воздухе.

Аналогичным образом белки стабилизируют пены при значениях рН, близких к изоэлектрической точке. Сильно заряженные белки обычно легко растворяются в воде и не обнаруживают поверхностной активности, а при рН, близких к изоэлектрической точке, белки менее растворимы. Поверхностная активность полимера повышается при уменьшении объемной растворимости. Это справедливо и для белков. Белки концентрируются на границе раствор-воздух по мере приближения рН к изоэлектрической точке. Повышение поверхностной активности отражается в повышении пенообразующей способности. Однако в изоэлектрической точке уменьшается растворимость белка.

Рис. 10. Твердые частично гидрофобизированные частицы действуют как пенообразователи. Оптимальная стабилизация пен достигается, если частицы образуют с водой краевой угол -90°

Пеногасители

В промышленных процессах пенообразование обычно нежелательно, поскольку оно препятствует производству продукта с высокими скоростями. Если пена все-таки появляется в таких системах, как правило, для борьбы с ней в систему вводят вещества, обладающие пеногасящими свойствами. Обычно это поверхностно-активные вещества или системы, разрушающие пену за счет растекания по пенной пленке. Например, пены, стабилизированные ионными ПАВ, можно легко разрушить, распыляя октанол поверх пены. Капли октанола, обладая очень низким поверхностным натяжением, растекаются по пенным пленкам. Этот процесс захватывает слой жидкости под поверхностью, вызывая утончение пенной пленки вплоть до ее разрыва.

Отметим, что октанол можно использовать только путем его распыления. Предварительное смешивание октанола с раствором ПАВ может, наоборот, привести к стабилизации пены, поскольку добавки октанола часто приводят к образованию ламелярной жидкокристаллической фазы с очень высокой способностью стабилизировать пенные пленки. Понятно, что октанол следует использовать с осторожностью, поскольку в конце концов могут образоваться даже более устойчивые пены. Другой механизм пеногашения под действием органических веществ, в том числе и октанола, может состоять в локальном увеличении общего КПУ системы из-за внедрения органических молекул между углеводородными фрагментами молекул ПАВ в монослое на границе вода-воздух. При этом возрастает вероятность возникновения дырок в пенных пленках, в результате происходит понижение пенообразующей способности.


Страница: