Переработка нефти
Рефераты >> Химия >> Переработка нефти

Гидрокрекинг олефинов протекает значительно легче, чем гидро­крекинг парафинов. Однако можно предполагать, что гидрокрекинг углеводородов обоих классов протекает с образованием одних и тех же промежуточных продуктов.

Нафтены расщепляются на углеводороды С3—С4, причем шестичленные нафтены в значительной степени изомеризуются в пятичленные; у некоторых, например у метилциклопентана, происходит раскрытие цикла без расщепления. Гидрокрекинг полицикличе­ских нафтенов, например декалина, протекает легче, чем гидро­крекинг соответствующих нормальных парафинов (C10H22); при этом получается относительно больше парафинов изостроения и моноциклических пятичленных нафтенов. Для производства высококачественного бензина наиболее важной реакцией при обыч­ном гидрокрекинге является частичное гидрирование полицикли­ческих ароматических структур с последующим разрывом насыщен­ных колец и образованием замещенных моноциклических аромати­ческих углеводородов. Боковые цепи, появляющиеся в результате такого разрыва, легко отщепляются.

Моноциклические ароматические углеводороды наряду с изопарафинами обусловливают высокие октановые числа бензина, и по­этому при гидрокрекинге желательно сохранить их непревращен­ными; в этом случае уменьшается и расход водорода.

При гидрокрекинге полициклических ароматических углеводо­родов образуются более легкие ароматические, нафтеновые и па­рафиновые углеводороды с большим содержанием парафиновых углеводородов изостроения (гидроизомеризация). В присутствии катализаторов, обладающих кислотными свойствами, гидроизоме­ризация протекает одновременно с другими реакциями гидрирова­ния. При температурах выше 350 °С равновесие реакции смещает­ся в сторону образования парафинов нормального строения, а не изопарафинов. Для нафтеновых углеводородов наблюдается обрат­ное Влияние температуры. Гидроизомеризация при гидрокрекинге парафинов имеет большое значение, если ставится цель получать моторные топлива.

Органические соединения серы в условиях гидрогенизационных процессов превращаются в соответствующие углеводороды и серо­водород; реакция может проходить через образование промежуточ­ных сернистых соединений. Меркаптаны, сульфиды и дисульфиды легко гидрируются в сравнительно мягких условиях. В цикличе­ских сероорганических соединениях под воздействием водорода происходит насыщение с последующим разрывом кольца и образо­ванием соответствующего парафинового или алкилароматического углеводорода. В качестве примера приведем две схемы пре­образования более сложных сероорганических соединений — бензтиофенов и дибензтиофенов:

По мере роста молекулярного веса фракций полнота удаления азотсодержащих соединений уменьшается. На полноту удаления влияет также состав катализатора и носитель. При гидрокрекинге в присутствии дисульфида вольфрама на алюмосиликатном носи­теле наличие азотистых соединений в сырье частично подавляет реакции изомеризации вследствие образования аммиака и аминов. В промышленных процессах гидроочистки котельных и дизельных топлив и смазочных масел желательно достигнуть полного удале­ния азотсодержащих соединений основного характера, которые, как давно известно, являются причиной плохой стабильности нефтепро­дуктов — ухудшения цвета и образования нерастворимых осадков при хранении.

Кислородсодержащие органические соединения обычно легко вступают в реакции гидрирования с образованием соответствую­щих углеводородов и воды. В сложных смолистых и асфальтеновых веществах нефти и нефтяных остатков содержится много кисло­рода и поэтому превращение их в углеводородные продукты проте­кает значительно труднее. Из кислородсодержащих соединений наибольшее значение имеют смолы и асфальтены, которые при гидрогенизации превращаются в более низкомолекулярные углево­дороды и воду. Кроме этих соединений в разном сырье могут при­сутствовать фенолы и нафтеновые кислоты, при гидрогенизации которых образуются соответствующие углеводороды и вода.

Промежуточные продукты крекинга нефти, содержащие высоко­активные молекулы, взаимодействуют с кислородом, образуя пере­киси и другие промежуточные продукты окисления. Эти кислород­ные соединения обычно легко разрушаются при гидрировании.

Часто все три рассмотренных выше типа соединений присут­ствуют одновременно, а иногда все три гетероатома находятся в одной и той же молекуле. Такие молекулы содержатся в высоко­кипящих фракциях и остаточных продуктах переработки нефти и угля. Они обычно содержат мало водорода и, кроме того, иногда связаны с металлами, присутствующими в нефтях.

Наряду с никелем в нефтях могут присутствовать другие ме­таллы— железо, медь, алюминий, титан, ванадий, молибден и др. В нефтях и нефтепродуктах содержатся также и некоторые другие элементы, попавшие в них извне (при добыче нефти и ее перера­ботке). Металлоорганические соединения разлагаются в присут­ствии активных катализаторов с выделением свободного металла, являющегося катализаторным ядом; он адсорбируется на поверх­ности катализатора, что снижает активность и избирательность ка­тализатора.

Ванадий в процессе гидроочистки удаляется относительно легко, никель же удаляется несколько труднее. Высказывается предполо­жение, что атомы ванадия концентрируются в наружных порах ка­тализатора, а атомы никеля — во внутренних.

В присутствии обычных катализаторов в условиях, при кото­рых происходит частичное превращение сернистых соединений, до­стигается практически полное превращение олефинов и кислород­содержащих соединений.

4.Разновидности гидрогенизационных процессов. Гидрогенизационные процессы в нефтеперерабатывающей промышленности применяются во все возрастающем объеме. Широкое развитие их обусловлено в основном повышением требований к качеству выра­батываемых нефтепродуктов и значительным объемом сернистых и высокосернистых нефтей, поступающих на переработку. Гидрогенизационные процессы имеют несколько разновидностей.

Деструктивная гидрогенизация — одно- или многоступенчатый каталитический процесс присоединения водорода под давлением, сопровождающийся расщеплением высокомолекулярных компонен­тов сырья и образованием низкомолекулярных углеводородов, ис­пользуемых в качестве моторных топлив. В качестве сырья можно использовать бурые и каменные угли, остатки от перегонки коксо­вых, генераторных и первичных дегтей; остаточные продукты пере­работки нефти (мазут, гудрон, крекинг-остатки), а также тяжелые дистилляты первичной перегонки нефти (350—500 °С) и вторичных процессов (газойли крекингов и коксования); высокосернистую нефть и нефть с высоким содержанием асфальто-смолистых веществ.

Гидрокрекинг — одно- или двухступенчатый каталитический процесс (на неподвижном или движущемся слое), сопровождающийся расщеплением высокомолекулярных компонентов сырья и образованием углеводородов, позволяющих в зависимости от усло­вий процесса и сырья получать широкую гамму продуктов: от сжиженных газов до масел и нефтяных остатков с низким содержа­нием серы. В качестве сырья можно использовать бензины (для получения сжиженного газа); керосино-соляровые фракции и вакуумные дистилляты (для получения бензина, реактивного и дизельного топлив); остаточные продукты переработки нефти (для получения бензина и реактивного и дизельного топлива); гачи и парафины (для получения высокоиндексных масел); высокосернистые нефти, сернистые и высокосернистые мазуты (для получения дистиллятных продуктов или топочного мазута с низким содержанием серы).


Страница: