Полигалогенпроизводные алканов
Рефераты >> Химия >> Полигалогенпроизводные алканов

В триплетном состоянии карбены проявляют некоторые свойства бирадикалов. В синглетном coстоянии они, с одной стороны обладают дефицитом электронов, что роднит их с ионами карбения, с другой стороны, имеют свободную электронную пару, что делает их аналогами карбанионов. Поэтому карбены могут проявлять как электрофильные, так и нуклеофильные свойства в зависимости от способности связанных с карбениевым углеродом атомов или групп оттягивать или нагнетать электроны, а также от характера реагента.

В триплетном метилене имеет место sp-гибридизация и два свободных электрона расположены на двух негибридизованных орбиталях, в синглетном - оба электрона находятся на гибридной орбитали, которая имеет больший характер и, следовательно, меньшую энергию. Tаким образом, следовало бы ожидать, что синглетное состояние будет более устойчивым. Однако уменьшение взаимного отталкивания электронов в триплетном состоянии (вследствие того, что электроны расположены на орбиталях и спины их параллельны) компенсирует выигрыш энергии, связанный с большим характером, и для незамещенного метилена в невозбужденном состоянии триплетное состояние более устойчиво, чем синглетное. В то же время для дихлоркарбена более устойчиво синглетное состояние.

Примерами реакций, идущих с участием дихлоркарбена, могут служить реакции получения диазометана:

,

,

Четыреххлористый углерод. Применяется как негорючий растворитель, в частности, при тушении пожаров, если горят жидкости с плотностью ниже 1 - легче воды. Служит для получения фреона-12.

При тушении пожаров с помощью СС14 возможны отравления, так как при окислении может образоваться фосген.

Дихлорэтан. Т. кип. 84. Дешевый, но ядовитый растворитель, исходный продукт для синтеза хлористого винила, используемого в промышленности пластмасс.

Гексахлорэтан. Кристаллическое вещество с т. пл. 187-188°С(в запаянном капилляре). Применяется как инсектицид (средство борьбы с вредными насекомыми), в качестве глистогонного средства (в ветеринарии), а также для производства дымовых шашек.

Большое применение в технике охлаждения получили полифторхлоруглеводороды (фреоны).

Производные метана обозначают двухзначными, а производные этана - трехзначными числами. Последняя цифра указывает число атомов фтора, предпоследняя - содержание водорода: 1 - пергалогенированные соединения (нет атомов водорода), 2 - есть один атом водорода, 3 – два атома водорода и т.д. Например, дифтордихлорметан , - дифторхлорметан , - тетрафтордихлорэтан .

Фреоны - очень устойчивые соединения, они не гидролизуются и поэтому не корродируют металл; используются как хладагенты, как растворители инсектофунгицидов для образования аэрозолей и как промежуточные продукты в синтезе фторпроизводных.

Наиболее распространенный фреон-12 получают из и в присутствии , как катализатора:

Важное применение получил фторотан - бесцветная тяжелая жидкость с запахом, напоминающим хлороформ. Это одно из самых эффективных средств для общего наркоза. Имеет ряд преимуществ перед хлороформом: мало токсичен, почти не дает стадии возбуждения, наркоз быстро проходит.

В науке о лекарственных веществах - фармакологии - все эти вещества классифицируются в зависимости от их основного влияния на различные биологические функции человеческого организма. Средства для общего наркоза – фторотан, хлороформ, этиловый эфир, циклопропан действуют преимущественно на центральную нервную систему.

Широкое применение фреонов в технике и в быту создало угрозу для существования в стратосфере озонного слоя, защищающего Землю от жесткого ультрафиолетового излучения. Пары галогенопроизводных фотохимически расщепляются в стратосфере с образованием атомов галогенов, которые вызывают превращение озона в кислород.

2. Фтороалканы

2.1 Развитие химии органических соединений фтора

История химии фтора начинается не в древнем Египте или Финикии и даже не в средневековой Аравии. Началом возникновения химии фтора послужило открытие фтористого водорода (Шееле, 1771г.) и затем элементарного фтора (Муассан, 1886 г.). Органические же соединения фтора были подвергнуты систематическому изучению только примерно в 1900 г. Овартсом, работы которого имеют большое значение. Дальнейшей вехой в развитии химии органических соединений фтора является применение фторированных производных метана и этана и качестве хладоагентов (Мидгли, Хенне, 1930 г.), что привело впоследствии к систематическому исследованию способов получения и свойств этих соединений. Примерно к 1940 г. стало ясным значение перфторпроизводных, и были разработаны способы их получения: каталитическое и некаталитическое фторирование элементарным фтором и фторирование фторидами серебра и кобальта. Приблизительно в это же время был получен тефлон, несколькими годами позже началось промышленное получение политрифторхлорэтилена. Разработанное в последнее время электролитическое фторирование позволяет легко получать перфторпроизводные электролизом в безводном фтористом водороде (1948 г.). В связи с этим, большое значение приобрело получение перфторалкилгалогенидов из перфторкарбоновых кислот, присоединение этих галогенидов к олефинам и ацетиленам, получение и реакции гриньяровских соединений из перфторалкилгалогенидов и, наконец, получение олефинов термическим разложением щелочных солей перфторкарбоновых кислот. Многочисленные реакции фторированных производных, найденные в последние годы, свидетельствуют о том, что развитие химии органических соединений фтора еще не завершено и что до сего времени открыты лишь самые основные реакции.

Из органических соединений фтора наибольшее значение имеют те, которые содержат в молекуле значительное число атомов фтора (полифтор- и перфторпроизводные). Эти соединения нашли практическое применение благодаря своей инертности, термической и химической стойкости (хладоагенты, полимерные материалы), а также представляют большой интерес с теоретической точки зрения, так как их поведение значительно отличается от поведения обычных соединений прочих галогенов.


Страница: