Свойства титана и его соединений
Рефераты >> Химия >> Свойства титана и его соединений

Использование карбидов и нитридов титана для получения чистого металла так же, как и смесей, содержащих металлический титан, связано с применением электрорафинирования. Это двухстадийный способ, отличающийся тем, что в качестве исходного сырья для первичной стадии процесса восстановления могут быть использованы титаносодержащие шлаки или даже концентраты руд. В качестве восстановителя используют уголь, алюминий, магний, кальций и другие элементы и соединения. В зависимости от вида восстановителя и условий протекания процесса получают металлический титан, низшие оксиды, карбид, нитрид, оксикарбид или оксикарбонитрид титана в смеси с другими соединениями и элементами.[7,c.11]

Магнийтермический способ получения титана. Для получения титана также применяется магний, при этом в качестве побочного продукта получается хлористый магний, являющийся сырьем для производства магния. Вместе с тем при производстве магния побочным продуктом является хлор, который необходим для получения четыреххлористого титана, поэтому производство магния и титана обычно совмещают на одном заводе.

Титан выпускают в виде губки или слитков, которые затем на других заводах перерабатывают на лист, профили, трубы, поковки и другие полуфабрикаты. Технологическая схема получения титана состоит из шести основных переделов.[7,c.29]

При промышленном получении титана руду или концентрат переводят в диоксид титана TiO2, который затем подвергают хлорированию. Однако даже при 800-1000˚С хлорирование протекает медленно. С достаточной для практических целей скоростью оно протекает в присутствии углерода, связывающего кислород в основном в СО:

TiO2 + 2Cl2 + 2C = TiCl4 + 2CO

Получающийся хлорид титана(IV) восстанавливают магнием:

TiCl4 + 2Mg = Ti + 2MgCl2

а образующуюся смесь подвергают нагреванию в вакууме. При этом магний и его хлорид испаряются и осаждаются в конденсаторе. Остаток – губчатый титан – переплавляют, получая компактный ковкий металл.

Примеси кислорода, азота, углерода резко ухудшают механические свойства титана, а при большом содержании превращают его в хрупкий материал, непригодный для практического использования. Поскольку при высоких температурах титан реагирует с названными неметаллами, его восстановление проводят в герметичной аппаратуре в атмосфере аргона, а очистку и переплавку – в высоком вакууме.[1,c.648]

Для получения небольших количеств титана высокой чистоты применяют иодидный метод.

Иодидный метод относится к термическому разложению. Исходный металл в виде порошка нагревается до 100-200˚С с небольшим количеством иода в герметическом аппарате. В аппарате натянуты титановые нити, нагреваемые электрическим током до 1300-1500˚С. Титан (но не примеси) образует с иодом летучий иодид TiI4, который разлагается на раскаленных нитях. Выделяющийся чистый титан осаждается на них, а иод образует с исходным металлом новые порции иодида; процесс идет непрерывно до переноса всего металла на титановые нити:

4. Физические и химические свойства

Титан – металл, элемент IV группы периодической системы Д.И. Менделеева. Порядковый номер 22. Атомная масса 47,88. Изотопы: 48 (основной), 46, 47, 49, 50. Плотность 4,5 г/см3. Существует в двух полиморфных модификациях: ά-Ti – при температурах ниже 882˚С, β-Ti - выше 882˚C. При переходе ά→β изменение объема составляет +5,5%, тепловой коэффициент перехода 0,38 ккал/г-атом. Температура плавления титана 1665+5˚С. Температура кипения 3572˚С. Давление паров при 1200-2000 К:

Прочность на разрыв чистого (иодидного) титана составляет примерно 20 кГ/мм2, товарного титана 30-40 кГ/мм2, прочность конструкционных сплавов на основе титана равна обычно 100-120 кГ/мм2, в отдельных же случаях достигает 140 кГ/мм2 и выше.

Все элементы периодической системы по отношению к титану по их химическому воздействию можно разделить на четыре группы:

1. Элементы, не взаимодействующие с титаном: Li, Na, K, Rb, Cs, Fr, Mg. Ca, Sr, Ba, Ra и инертные газы.

2. Элементы, образующие с титаном химические соединения с ковалентной связью, не имеющие или имеющие малую растворимость в титане: H, F, Cl, Br, I, At, O, S, Se, Te, Po.

3. Элементы образующие с титаном соединения с металлическим характером связи (металлические соединения) и ограниченные твердые растворы: Cu, Ag, Zn, Cd, Hg, Be, Ga, In, Tl, B, Al, Th, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi, Mn, Te, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir.

4. Элементы, образующие с титаном β-модификации непрерывных твердых растворов: Zr, Hf, V, Nb, Ta, Cr, Mo, Sc, W.

Таким образом, титан так или иначе взаимодействует с с большинством элементов. Это, с одной стороны, создает значительные трудности при получении чистого титана и его сплавов, а , с другой стороны, дает возможность получать большое количество разнообразных по составу и свойствам сплавов.[7,c.5]

Титан – довольно активный металл; стандартный электродный потенциал системы Ti/Ti2+ равен -1,63 В. Однако благодаря образованию на поверхности металла плотной защитной пленки титан обладает исключительно высокой стойкостью против коррозии, превышающей стойкость нержавеющей стали. Он не окисляется на воздухе, в морской воде и не изменяется в ряде агрессивных химических сред, в частности в разбавленной и концентрированной азотной кислоте и даже царской водке.[1,c.649]

Титан при низкой температуре более устойчив к действию кислорода, чем железо, однако при нагревании на воздухе он сгорает до TiO2. С хлором титан реагирует примерно при 300˚C.[2,c.635]

В отличие от циркония и гафния титан растворяется при нагревании в соляной кислоте, образуя в восстановительной атмосфере аквакомплексы Ti(III):

Растворы титана. В водных растворах Ti находится преимущественно в 4-валентном состоянии, но в определенных условиях существуют комплексы, в которых валентность титана равна трем. Малый ионный радиус позволяет ему приобретать заметную долю электронной плотности кислородного донора с образованием прочной ковалентной связи. Значения электроотрицательности для TiOH и TiO – 2,43 и 2,56 соответственно. Сродство ионов Ti+4 настолько велико, что комплексы практически всегда содержат кислород и образуют в растворах титана(IV) цепи с гидроксильными и кислородными мостиками.

Химия титана даже в разбавленных растворах оказывается связанной с процессами полимеризации.

В растворах титан может находиться в форме простых и комплексных ионов, а также в коллоидно-дисперсном состоянии. Превалирование той или иной формы зависит от условий получения и хранения раствора, его концентрации, содержания примесей и других факторов. Способность Ti вступать в типичные ионные реакции, например в окислительно-восстановительные, свидетельствует о том, что в растворах сернокислые соли диссоциирует на катионы и анионы. Так, превращение сульфата в хлорид при добавлении BaCl2:


Страница: