Структура и адгезионные свойства отверждённых эпоксидных смол
Рефераты >> Химия >> Структура и адгезионные свойства отверждённых эпоксидных смол

Рис. 17. Образцы для определения сдвиговой адгезионной прочности в со­единениях полимеров с волокнами: 1 - волокно диаметром d; 2 - слой полимер толщиной l

Адгезионное соединение возникает на по­верхности волокна, погруженного в слой адгезива. Геометрия соединения характеризуется длиной l, определяемой толщиной слоя полимера, и площадью S = p dl, где d - диаметр волокна. (Величину S можно называть также площадью контакта). При разрушении образцов измеряют силу F, необходимую для вы­дергивания волокна из слоя адгезива, т. е. определяют сдвиговую адгезионную прочность. Адгезионную прочность каждого испытанного образца рассчитывают по формуле

(2)

Весьма важным является вопрос о том, каков смысл определяемого с помощью этой формулы значения адгезионной проч­ности. Для строгого выполнения формулы (2) и соответственно, для получения «безусловного» значения t необходимо, чтобы: 1)сечение волокна было круглым; 2) диаметр погруженного в матрицу участка волокна — постоян­ным; 3) волокно равномерно (без нарушения сплошности) было покрыто полимером; 4) видимая и истинная площади соприкос­новения волокна и полимера были одинаковы; 5) касательные напряжения на границе раздела между связующим и волокном были распределены равномерно[7]. Предположение о равномерном распределении напряжений в соединениях полимеров с волокнами, как правило, не выпол­няется, и уже поэтому значение адгезионной прочности, опре­деляемое делением силы на площадь, характеризует некоторое усредненное значение t и по этой причине является величиной условной, как и большинство величин, используемых для оценки прочности.

Адгезия эпоксидных матриц к углеродным волокнам

Углепластики — полимерные композиционные материалы на ос­нове углеродных волокон. Обладают комплексом ценных свойств: сочетанием очень высокой жесткости, прочности и термостойкости с малой плотностью. В то же время известно, что углепластики обладают низкой прочностью при сдвиге. Часто это связывают с плохой адгезией связующих к поверхности углеродных волокон, поэтому определение прочности сцепления полимеров с поверх­ностью этих волокон представляет особый интерес.

Про­ведение таких опытов сопряжено с большими трудностями, прежде всего из-за малого диаметра волокон и их повышенной хрупкости. При этом сложно получить соединения таких разме­ров, чтобы разрушение было адгезионным. В опытах с углеродными волокнами наряду с адгезионно разрушившимся образцами имеется большое число образцов, ко­торые при приложении внешней нагрузки разрушаются по волокну, т. е. когезионно. Однако при тщательно проведенном экс­перименте и для этих очень хрупких волокон можно добиться хорошей воспроизводимости результатов[7].

В измерениях подложкой служили английские углеродные волокна Модмор-2 и отечественные на основе полиакрилонитрила. Сечение этих волокон практически круглое, что значительно упрощает расчет адгезионной проч­ности и вносит меньшую погрешность в определение значения t0. Механические характеристики волокон приведены ниже:

dcр

мкм

s

ГПа

E

ГПа

Углеродное (Модмор-2)

Борное

ВНИИВЛОН

SiC

9

100

13

100

3,0

2,0

4,0

2,3

250

400

130

550

При производстве углепластиков широко используются различные эпоксидные матрицы, а также связующие с повышенной теплостойкостью. Ниже приве­дены данные об адгезионной прочности (t0, МПа) при взаимо­действии термореактивных связующих с углеродными волокнами Модмор-2 и (для сравнения) с бесщелочными стеклянными диаметром 9 мкм (S = 6×10-3 мм2):

Углеродное волокно

Стеклянное волокно

Эпоксидиановое ЭДТ-10 Эпоксифенольное 5-211 Эпокситрифенольное ЭТФ Эпоксидные циклоалифатические

41,5

41,0

43,0

40,5-43,0

40,0

41,0  

Видно, что исследованные связующие обладают высокой адгезией к углеродным волокнам и значения адгезионной прочности близки. Поверхность волокон Модмор-2 обычно покрыта замасливателем. Поэтому кажется весь­ма вероятным, что разрушение происходит не по границе раз­дела, а по слою нанесенного замасливателя. При этом естествен­но, что значения адгезионной прочности для различных компози­ций практически не различаются.

Косвенным подтверждением такого предположения служат результаты изучения адгезии тех же олигомеров к чистой огнеполированной поверхности непосредственно вытянутых из печи стеклянных волокон и к волокнам бора: в этом случае величина t0существенно меняется.

Известно, что для увеличения прочности углепластика при межслоевом сдвиге часто используют различные способы окислительной обработки наполнителя: окисление горячим воздухом, обработка озоном, электрохимическая активация методом анодного окисле­ния. Кроме того, поверхность углеродных волокон обрабатывают специальными аппретами[7].

Рассмотрим влияние обработки поверхности углеродных во­локон на межфазное взаимодействие для волокон на основе полиакрилонитрила. Адгезионная прочность при взаимодей­ствии связующих с этими волокнами, если их поверхность не подвергнута химической обработке, невысока:

nt

ns

t0 МПа

Эпоксидиановое ЭДТ-10

32

54

44,3

Эпоксиноволачная

31

44

39,0

Хлорсодержащее

Эпоксидное

59

35

27,5

Адгезионная прочность в этом случае существенно ниже, чем при взаимодействии со стеклянными волокнами. Например, для связующего ЭДТ-10 значение tопри взаимодействии со стеклян­ными волокнами (при одной и той же геометрии соединения) равно 55 МПа.


Страница: