Термоэластопласты, фторкаучуки, полисульфон
Рефераты >> Химия >> Термоэластопласты, фторкаучуки, полисульфон

Кроме соотношения компонентов, большое влияние на свойства термоэластопластов оказывает молярная масса блоков, в первую очередь эластомерного. Так, достаточно высокие показатели прочности при растяжении и эластичности реализуются у термоэластопластов на основе полистирола и каучуков, начиная с молярной массы блоков полистирола 7-15 тыс. и блоков каучука 20-80 тыс. Выше этих значений изменение молярной массы блоков в достаточно широких пределах мало сказывается на свойствах термоэластопластов.

При введении в подобные термоэластопласты до 20% гомополимера стирола с молярной массой, близкой к молярной массе полистирольных блоков, прочностные свойства термоэластопластов почти не меняются, однако они резко ухудшаются при введении уже 5% сополимера АВ или гомополимера диена.

Расплавы термоэластопластов характеризуются высокими значениями вязкости.

Свойства некоторых термоэластопластов приведены в таблице.

Свойства различных типов термоэластопластов

Состав термоэластопласта

Прочность при растяжении,Мн\м2

Относительное удлинение, %

Твердость по Шору

Модуль при 300% удлинении, Мн\м2

Полистирол-полиизопрен-полистирол(29% стирола)…………

Полистирол-полибутадиен-полистирол(30% стирола)…………

Полистирол-полибутадиен; разветвленный, типа солпрен(30% стирола)…………

Полисульфон-полисилоксан-полисульфон(28% полисилоксана)…

Полиариленсульфон-полисилоксан-полиариленсульфон

(67%полисилоксана)

32

31

21

33

9  

1110

880

700

12

500

66

72

80

-

-

1.1

2.4

3.0

120.

14

Термоэластопласты недостаточно стабильны при действии тепла и атмосферных факторов, в том числе озона. Поэтому в термоэластопласты вводят антиоксиданты, например 2,6-ди-трет-бутил----4-метилфенол(ионол); стабилизаторы- наиболее эффективны производные бензтриазола; антиозонанты- дибутилтиомочевина и дибутилдитиокарбамат никеля. Эффективно также введение добавок озоностойких полимеров (полиэтилена, этилен-пропиленового каучука, сополимера этилена с винилацетатом и др.).

Термоэластопласты совмещаются с другими полимерами и олигомерами, в них можно вводить, как и в обычные каучуки, различные минеральные наполнители и пластификаторы, например масла.

Переработка и применение:

Термоэластопласты можно перерабатывать как методами, обычными для термопластов (литье под давлением, экструзия), так и методами, характерными для эластомеров – вальцеванием, каландрованием. Стирол – бутадиеновые термоэластопласты менее деструктируют при вальцевании, чем стирол-изопреновые, термическая деструкция которых с заметной скоростью протекает при температурах 70-130°С. Оптимальная температура переработки этих термоэластопластов литьем и экструзией 150-200°С ; при более низких температурах может протекать интенсивная механодеструкция, при более высоких – окисление.

Термоэластопласты широко применяют в обувной промышленности – в качестве кожзаменителей для изготовления верха и низа (литьем под давлением) обуви, в строительстве- для получения герметизирующих мастик и листов для гидро- и звукоизоляции. Термоэластопласты используют в производстве резино-технических изделий, медицинских изделий (перчатки, уплотнения в шприцах, и насосах для перекачки крови плазмы, упаковочные материалы и др.), изоляционных лент, игрушек, а также разнообразных изделий, сочетающих жесткость и эластичность в области температур от -75 до 80°С. Термоэластопласты – добавки к резиновым смесям, улучшающие ряд технологических характеристик (прочность в сыром состоянии, пластичность).

Перспективно применение термоэластопластов в качестве модификаторов термопластов и каучуков. При введении ≈7-10% изопрен-стирольного термоэластопласта в полиэтилен существенно повышают его прочность при растяжении и удлинение, стойкость к растрескиванию. Содержание 10-15% такого же термоэластопласта в полипропилене обусловливает его более высокую морозостойкость ( от -40 до -50°С вместо -20) при сохранении комплекса механических свойств. Совмещением полистирола с термоэластопластом того же состава (ок. 30%) удается получить высокопрочный, морозостойкий материал с высокими диэлектрическими свойствами, пригодный для переработки методами литья, экструзии и вакуум-формирования. Арилат- силоксановые термоэластопласты типа силар находят применение в производстве мембран для разделения газов.

Термоэластопласты различных типов выпускаются за рубежом под названиями: кратон, карифлекс, солпрен(США), тафпрен(Япония), и др. Мировое производство всех типов термоэластопластов в 1975 году составило около 100 тыс. тонн.

Термоэластопласты на основе стирола и диеновых мономеров впервые были синтезированы А.А. Коротковым в 1959 году, их промышленное производство начато в 1965 году в США.

ФТОРКАУЧУК

Фторорганические каучуки, фторкаучуки- фторсодержащие полимеры обладающие каучукоподобными свойствами. Известны фторсодержащие каучукоподобные полимеры:

1. полиперфторалкилентриазины, гомо- и сополимеры окисей перфторолефинов, обладающих высокой термостойкостью;

2. сополимеры трифторнитрозометана с тетрафторэтиленом, которые отличаются уникальной химстойкостью и удовлетворительной морозостойкостью;

3. полимеры перфторакрилатов, которые характеризуются повышенной устойчивостью к действию растворителей и озона.

СТРУКТУРА И ФИЗИЧЕСКИЕ СВОЙСТВА:

Макромолекулы фторкаучуков имеют следующую структуру:

[( —CF2—CFX—)x—(—CH2—CF2—)y]n

где X-Cl, CF3, CF3O и другие. Звенья мономеров присоединены в положении «голова к хвосту». На концах макромолекул могут находиться группы —CH=CF2 и карбонильные группы. Высокая тепло- и химическая стойкость фторкаучуков обусловлена большой энергией связей F-C [≈503 кДж/моль] и их полярностью. Теплота образования сополимера винилиденфторида с гексафторпропиленом 7.5 МДж/кг, теплота сгорания – 12.7 МДж /кг. Все фторкаучуки характеризуются значительным межмолекулярным взаимодействием (например, плотность энергии когезии сополимера винилиденфторида с гексафторпропиленом 398 МДж/м3). Этим объясняется их более высокая, чем у других синтетических каучуков жесткость.

Соотношение мономеров в фторкаучуке может меняться в широких пределах. Например в сополимерах винилиденфторида с гексафторпропиленом содержание последнего может составлять 40-85% (по массе). С увеличением содержания гексафторпропилена повышается эластичность, но уменьшается прочность каучуков. Сополимер винилиденфторида с трифторхлорэтиленом, содержащий менее 20% звеньев второго сомономера, характеризуется пониженной стойкостью к маслам и топливам; сополимер, содержащий более 69% этих звеньев, теряет эластичность. Наиболее характерные физические свойства фторкаучуков приведены в таблице :


Страница: