Углеграфитовые материалы
Рефераты >> Химия >> Углеграфитовые материалы

ВВЕДЕНИЕ

Все виды углеграфитовых материалов производятся на основе углерода. Ассортимент изделий весьма многочислен, а каждый вид характеризуется оригинальными свойствами.

Основную роль в создании такой разновидности изделий играют прежде всего углеродистые вещества, встречающиеся в разнообразных формах, а также их сложная технологическая переработка.

Объяснения большому разнообразию физических свойств различных видов углеродистых материалов следует искать в различной группировке отдельных кристаллов, а также в специфичности кристаллической решетки графита. Свойства готового продукта зависят не только от молекулярной, но и от дисперсной структуры. Поэтому в зависимости от степени дисперсности, изделия будут обладать различными свойствами даже при большом сходстве в молекулярном составе.

1. СТРУКТУРА КРИСТАЛЛА ГРАФИТА

Структура графита состоит из непрерывного ряда слоев параллельных оснований плоскости гексагонально связанных атомов углерода. Структура графита является типичным примером слоистой решетки. Каждая сетка (слой) толщиной в один атом представляет собой одну молекулу, простирающуюся через весь кристалл.

Рис. 1 Кристаллическая структура графита: а) модель графита, б) взаимное расположение слоев в гексагональной структуре

Две структуры характерны для графита: гексагональная и ромбоэдрическая. В обеих структурах основным элементом является плоская сетка. Располагая эти плоские сетки в той или иной закономерности, можно создать ту или иную структуру графита. Расстояние между слоями как в одной, так и в другой идеализированной структуре одинаково. Следовательно, обе структурные разновидности графита будут отличаться друг от друга только закономерностью последовательного расположения плоских сеток.

В одной и той же массе могут присутствовать обе структуры графита. Причем наиболее распространенной является гексагональная структура, которая содержится в любом графитовом веществе (более 80 %). При высокой температуре (более 200 0С) ромбоэдрическая модификация превращается в гексагональную, чем и объясняется, что искусственные графиты состоят почти полностью из гексагональной модификации.

Расположение плоских слоев в гексагональной структуре подчинено следующей закономерности: два соседних слоя смещены один по отношению к другому на 14,17 нм, но в противоположную сторону. Следовательно в слоях, расположенных через один слой, атомы углерода будут располагаться строго один под другим. Если один слой обозначить через "А", а другой через "В", то последовательность упаковки можно представить символом АВАВАВ…. На рис. 1 показана проекция такой упаковки слоев.

Элементарной ячейкой гексагональной структуры графита является прямая призма, в основании которой лежит правильный ромб. Теоретическая плотность при данной модификации равна 2265 кг/м3.

Другая идеализированная структура графита, ромбоэдрическая, также состоит из плоских шестиугольных сеток и также каждый слой по отношению к другому сдвинут на 14,17 нм. Однако закономерность чередования слоев иная. Если в гексагональной структуре имеются слои "А" и "В" в двух различных положениях, то в ромбоэдрической структуре эти слои имеют три различных положения. По аналогии с предыдущим, ромбоэдрическую решетку можно представить упаковочным символом АВСАВС… или в каждом третьем атоме слое атомы углерода располагаются точно под первым. Обработка горячими сильными кислотами приводит к перестройке атомных слоев и подавлению ромбоэдрической структуры с образованием гексагональной.

2. КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ УГЛЕГРАФИТОВЫХ МАТЕРИАЛОВ

Еще в недалеком прошлом в промышленности производились в основном для электротермических и электролитических процессов, а также мелкие изделия электротехнического назначения – электроугли разных типов. В последние годы в электродной и электроугольной промышленности освоен широкий ассортимент новых видов изделий из угля и графита и очень расширились области их применения, что потребовало четкой классификации изделий.

Все виды углеграфитовых материалов можно разделить на следующие семь классов: электродные изделия, огнеупорные изделия, химически стойкие изделия, электроугольные изделия, антифрикционные изделия, графитированные блоки и детали для атомной энергетики, электродные массы.

2.1 ЭЛЕКТРОДНЫЕ ИЗДЕЛИЯ

Электродами называют концы токопроводящей проводки, которые служат для ввода тока в рабочее пространство различных приборов, печей, электролизеров.

Все виды электродных материалов, которые производит электродная промышленность, делятся на четыре типа: угольные, коксовые, графитовые и графитированные.

К угольным электродам относят такие, для изготовления которых в качестве основного сырья применяют антрацит. Эти электроды характеризуются высокой зольностью, высоким электрическим сопротивлением и низкой теплопроводностью.

Коксовые электроды изготавливают из малозольных коксов, они характеризуются низкой зольностью (ниже 1 %), высоким электрическим сопротивлением и малой теплопроводностью.

Графитовые электроды изготавливают на основе естественного и искусственного графитов. Их производят взамен угольных.

Графитированные электроды изготавливают из малозольных коксов и подвергают графитации, откуда и происходит их название. Они характеризуются низким содержанием золы, обладают высокой теплопроводностью и электропроводностью.

Электродная продукция широко применяется в производстве качественных сталей, алюминия, искусственных абразивов, цветных металлов и др. Крупнейшими потребителями являются сталеплавильная, алюминиевая и химическая промышленности.

В алюминиевой промышленности при проведении процесса электролиза оксида алюминия важнейшей деталью электролизера является токопроводящая подина, которая полностью изготавливается из угольных блоков. Из таких же блоков выкладываются боковые стенки.

В химической промышленности графитовые аноды главным образом применяются при электролизе раствора хлористого натрия.

2.2 ОГНЕУПОРНЫЕ ИЗДЕЛИЯ

Углеродистые материалы широко применяются в строительстве самых различных типов печей, где они с успехом заменяют применявшиеся ранее различные огнеупорные материалы. При высоких температурах углеродистые материалы в силу их специфических свойств и относительной дешевизны незаменимы при строительстве электрических печей и других тепловых агрегатов.

Наибольшее количество огнеупорных углеродистых материалов применяется при строительстве доменных печей. Углеродистые огнеупоры значительно увеличивают продолжительность службы печи, обеспечивают безопасность работы, упрощают конструкцию печи и т.д. Преимущества углеродистых огнеупоров перед шамотными состоят в том, что они хорошо противостоят агрессивному действию жидкого чугуна и шлаков. Угольные блоки обладают более высокой теплопроводностью, что улучшает теплопередачу. Они лучше сопротивляются истиранию, чем шамотный кирпич.


Страница: