Химическая термодинамика. Скорость химических процессов
Рефераты >> Химия >> Химическая термодинамика. Скорость химических процессов

химический термодинамика скорость раствор

Таким образом, можно условно принять, что внутренняя энергии системы состоит из двух составляющих: "свободной" X и "связанной" Y энергий, причем "свободная" энергия может быть переведена в работу, а "связанная" энергия может перейти только в теплоту.

1-44

Мерой связанной энергии является новая термодинамическая функция состояния, называемая энтропией.

В природе протекание большинства процессов, в том числе и химических, сопровождается не только энергетическими эффектами, но и изменением в упорядочении расположения частиц относительно друг друга. Рассмотренные выше примеры превращений имеют одно общее свойство: в каждом случае состояние продуктов характеризуется большей хаотичностью, или неупорядоченностью, чем состояние реагентов. Растворение хлорида калия сопровождается нарушением регулярности в расположении частиц в узлах кристаллической решетки - возникает беспорядочное распределение ионов в растворе. Молекулы воды, образующие кристалл льда, прочно удерживаются в его кристаллической решетке. При плавлении льда молекулы H2O начинают свободно перемещаться относительно друг друга. Высокоупорядоченная кристаллическая структура заменяется неупорядоченной структурой жидкости. В процессе испарения структура жидкости, представленная ассоциатами из ее молекул, заменяется отдельными молекулами, движущимися независимо (в газовой фазе).

Таким образом, частицам (молекулам, атомам, ионам и др.) присуще стремление к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное. Количественной мерой неупорядоченности (беспорядка) системы является термодинамическая функция состояния системы - энтропия (S, Дж/ (мольK)). Чем в большей мере выражен беспорядок в системе, тем больше ее энтропия. Следовательно, еще одной составляющей движущей силы самопроизвольно протекающих процессов является тенденция к увеличению энтропии системы.

II закон термодинамики является одним из наиболее общих положений всей науки в целом. Главная мысль его заключается в том, что в любой изолированной системе с течением времени происходит постоянное возрастание степени беспорядка, т.е. энтропии. Следовательно, для любых самопроизвольных процессов

ΔS ≥ 0.

Знак ">" - для необратимых процессов, знак "=" - для обратимых процессов.

Для обратимых процессов ΔS = Q/T, [Дж/К моль].

Для необратимых процессов ΔS > Q/T, [Дж/К моль].

II закон термодинамики имеет ясный физический смысл только тогда, когда его применяют к любой ограниченной системе. Функции системы, которые связаны с работой и говорящие о направлении процесса, называются термодинамическими потенциалами. Критерием для суждения о направлении процессов в изолированных системах может служить изменение энтропии ΔS. Однако на практике большинство процессов протекает в неизолированных системах и связано с теплообменом и изменением объема. Поэтому для неизолированных систем необходимо иметь другие критерии. Энтропию веществ принято относить к стандартным условиям (T = 298,15 K и p = 101,3 кПа). Энтропию при этих условиях называют стандартной энтропией и обозначают S° (298 K). Значения стандартных энтропий для многих веществ являются справочными данными.

2.1 Объясните изменение энтропии в процессах

Уравнение реакции позволяет судить о знаке изменения энтропии ∆S0.

а) 3Н2 (г) + N2 (г) = 2 NН3 (г)

В реакции число молей газообразных веществ уменьшается от 4 до 2, поэтому ∆S0 < 0

б) С (тв) + Н2О (г) = СО (г) + Н2 (г).

Из реакции следует, что из 1 моля твердого С и 1 моль газообразного Н2O образуется 2 моль газообразных веществ (1 моль СО (г) и 1 моль Н2 (г)). Следовательно ∆S0 > 0.

3. Зависимость скорости химической реакции от концентрации реагирующих веществ. Закон действующих масс

Химические реакции протекают с различными скоростями. Некоторые из них полностью заканчиваются за малые доли секунды (взрыв), другие осуществляются за минуты, часы, дни и большие промежутки времени. Кроме того, одна и та же реакция может в одних условиях (например, при повышенных температурах) протекать быстро, а в других (например, при охлаждении) - медленно. При этом различие в скорости одной и той же реакции может быть очень большим.

Раздел химии, изучающий скорости химических реакций, называется химической кинетикой.

При рассмотрении вопроса о скорости реакций необходимо различать гомогенные и гетерогенные реакции. С этими понятиями тесно связано понятие фазы.

Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком.

Гомогенная реакция протекает в объеме фазы [пример - взаимодействие водорода и кислорода с образованием водяного пара: H2 (г) + O2 (г) → H2O (г)], а если реакция гетерогенна, то она протекает на поверхности раздела фаз [например, горение углерода: C (т) + O2 (г) → CO2 (г)]. Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема фазы:

image002,

где n - количество вещества, моль; V - объем фазы, л; t - время; С - концентрация, моль/л.

Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы:

image004,

где S - площадь поверхности раздела фаз.

К важнейшим факторам, влияющим на скорость гомогенной реакции, являются следующие: природа реагирующих веществ, их концентрации, температура, присутствие катализаторов.

Зависимость скорости реакции от концентраций реагирующих веществ. Реакция между молекулами происходит при их столкновении. Поэтому скорость реакции пропорциональна числу соударений, которые претерпевают молекулы реагирующих веществ. Число соударений тем больше, чем выше концентрация каждого из исходных веществ. Например, скорость реакции A + B → C пропорциональна произведению концентраций А и В:

v = k× [A] × [B],

где k - коэффициент пропорциональности, называемый константой скорости реакции. По смыслу величина k равна скорости реакции для случая, когда концентрации реагирующих веществ равны 1 моль/л.

Это соотношение выражает закон действия масс. Этот закон называют также законом действующих масс.: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Гораздо реже реакция осуществляется в результате одновременного столкновения трех реагирующих частиц. Например, реакция


Страница: