Химический анализ силикатов и керамики
Рефераты >> Химия >> Химический анализ силикатов и керамики

Интенсивность дифракционного отражения измеряли по высоте пика в максимуме за вычетом уровня фона. Исследуемые образцы измельчали до прохождения через сито с сеткой № 0063 (10 000 отв./ см²). Количественные определения производили на дифрактометре УРС – 50ИМ, снабжённом приставкой ГП-4, позволяющей вращать образец около нормали к его плоскости. Рентгенограммы снимали на Сu Кα – излуче-нии с Ni – фильтром при напряжении на трубке 30 кВ и токе 11 мА с использованием счётчика Гейгера МСТР-4.

Из рис. 6, на котором показаны результаты исследований, следует, что образование муллита происходит в две стадии. Первая – резкий скачёк на протяжении 50 -100˚С, вторая – медленное увеличение количества муллита при повышении температуры. Первая стадия у каолинитовых глин заканчивается при 1200-1250˚С, у каолинито- гидрослюдистых и каолинито – монтмориллонитовых – при 1100-1150˚С.

Количественный выход муллита различен и обусловлен химико-минералогическим составом глин. Наибольший выход муллита наблюдается при обжиге каолинитовых глин, а также каолинитовых с незначительной примесью гидрослюды, монтмориллонита и смешаннослойных образований. Кривые 1 -4 показывают, что интенсивное образование муллита при обжиге этих глин наблюдается в интервале 1100 - 1250˚С. При дальнейшем повышении температуры содержание муллита увеличивается медленно и сопровождается ростом кристаллов.

При обжиге каолинито-гидрослюдистых и каолинито-монтмориллонитовых клин ( кривые 5 – 10 )на рис. 6) муллитообразование происходит в основном в интервале температур 1000 -1100˚С. В этих глинах в отличие от каолинитовых образуется мелкокристаллический муллит. Результаты исследований согласуются с многочисленными данными по исследованию муллитизации глин.

В обжигаемом каолините при 950˚С появляется муллитоподобная фаза, характеризующаяся диффузностью линий на рентгенограммах и неопределённостью состава. Образование муллита из шпинели идёт так же, как и шпинели из метакаолинита, т.е. путём выделения из неё части кремнезёма. В интервале температур 1100-1300˚С муллитовая фаза постепенно превращается в муллит, состав которого при температуре выше 1300˚С приближается к 3 Аl2 O3 · 2 SiO2. исследованиями было экспериментально подтверждено, что при обжиге каолинитовых глин структурно неупорядоченный муллит возникает при 950˚С и изменяется при повышении температуры, приобретая всё более упорядоченную решётку, постоянный состав и игольчатый габитус. В исследованиях малощелочных каолинитовых, а также каолинитовых глинах с незначительной примесью гидрослюды и монтмориллонита процесс образования муллита идёт подобно описанному.

При обжиге каолинито-гидрослюдистых глин образование муллита с упорядоченной решёткой происходит при обжиге малощелочных каолинитовых глин. Из рис. 6 следует, сто при обжиге каолинито-гидрослюдистых глин синтез муллита протекает так же, как при обжиге каолинитовых глин однако с той существенной разницей, что интервал быстрого увеличения содержания муллита смещается в область более низких температур на 50 -100˚С. В первом периоде образуется структурно несовершенный муллит, а во втором происходит совершенствование его кристаллической решётки. При обжиге до 1300˚С интервал температур второго периода у каолинито-гидрослюдистых и каолинито-монтмориллонитовых глин состовляет 100-150˚С, а у каолинитовых – около 50˚С.

Муллит с наиболее совершенной структурой образуется при обжиге каолинито-гидрослюдистых глин до 1300˚С. Выделившийся при разрушении решётки гидрослюды, содержащейся в этих глинах, R2О при относительно низких температурах образует щелочесиликатный расплав, в котором растворяется Аl2O3. В результате структурными элементами расплава являются алюмокислородные группы. В группах Si – О – Аl алюминий находится в четвертной координации, а в группах Аl – О – Аl в шестерной. Из указанных групп строится кристаллическая решётка муллита. Наличие расплава такого строения обуславливает образование муллита с более совершенной структурой.

При обжиге малощелочных каолинитовых глин вследствие незначительного содержания в них плавней жидкой фазы образуется мало, поэтому рентгенографически образование муллита отмечается при более высоких температурах, чем в каолинит-гидрослюдных (см. рис. 6), причём он имеет несовершенную структуру. При повышении температуры структура муллита, образовавшегося при обжиге малощелочных каолинитовых глин, совершенствуется.

При обжиге каолинитовых глин, содержащих около 2% R2О, жидкая фаза образуется по такому же механизму, что и при обжиге каолинито-гидрослюдистых глин. Структурными элементами образовавшейся жидкой фазы являются Si – О – Si , Si - О – Аl и Аl - О – Аl. Поэтому при термической обработке таких глин образование муллита и совершенствование его структуры происходит при более низких температурах, чем при обжиге малощелочных каолинитовых глин.

Список использованной литературы

1. Кашкаев И. С., Шейнман Е. Ш. / Производство глиняного кирпича / Изд. – «Высшая школа» М – 1970г.

2. Павлов В. Ф. / Физико – химические основы обжига изделий строительной керамики / Изд. – Стройиздат М-1977 г.

3. Савельев В.Г., Федоров Н.Ф./ Физическая химия силикатов и других тугоплавких соединений / М., 1988


Страница: