Химический анализ силикатов и керамики
Рефераты >> Химия >> Химический анализ силикатов и керамики

Группа хлорита. Среди глинистых образований наиболее распостранён шамозит со структурной формулой Fe5 Al (OH)8 · [AlSi3 O10] · nH2O.Такие минералы этой группы, как сепиолит, палыгорскит, - редкие составные части глинистых образований.Кристаллические решетки глинистых минералов имеют сложный характер. Их структура слагается двумя единицами. Одна структурная единица состоит из двух слоев плотноупакованных атомов кислорода и или гидроксилов с катионом алюминия в центре, находящимся на равном расстоянии от шести атомов кислорода или гидроксилов. Нормальное расстояние между атомами кислорода составляет около 2,6 Å, а между гидроксилами - обычно 3Å. Пространство, доступное для атома в октаэдрической координации, составляет около 0,61Å. Толщина этой структурной единицы в структурах глинистых минералов равна 5,05Å.Вторая структурная единица образована кремнекислородными тетраэдрами. В центре каждого тетраэдра расположен атом кремния, одинаково удалённый от четырёх атомов кислорода или гидроксилов. Кремнекислородные тетраэдры сгруппированы таким образом, что создают гексагональную сетку, которая бесконечно повторяется и образует лист Si4O6 (OH)4. Тетраэдры расположены так, что все их вершины обращены в одну сторону, а основания лежат в одной и той же плоскости. Расстояние между атомами кислорода в кремнекислородном тетраэдре составляет 2,55Å, а пространство, доступное для атома тетраэдрической координации, - 0,55Å. Толщина этой структурной единицы в структуре глинистых минералов равна 4,93 Å.

Каолинит Химический состав Al4[Si4, O10](OH)8. Структура каолинита в общих чертах была разработана Паулингом. Как и все глинистые минералы, каолинит – слоистый силикат, построенный из наложенных один на другой слоёв. Каждый структурный слой каолинита состоит из двух элементарных слоёв – кремнекислородного тетраэдрического и алюмокислородного октаэдрического, сочленённых в один слой так, что вершины октаэдров примыкают к вершинам тетраэдров. Каолинит характеризуется правильным чередованием слоев с периодом около 7Å. На диаграммах дифракции рентгеновских лучей присутствуют сильные рефлексы 7,1 и 3,5Å, исчезающие при температуре нагрева образца 450º С.Экспериментально установлено, что для каолинита характерны незначительные изоморфные замещения. Ион кремния может частично замещаться ионом алюминия, реже -ионом железа. Наблюдается также небольшая степень замещения алюминия железом или титаном. Кристалличность каолинита хорошо выражена в его габитусе в виде шестиугольных пластинок заметной толщины с углом между гранями 106-140º. Описаны также плохо окристаллизованные каолинитовые минералы. У плохо окристаллизованного каолинита межплоскостное расстояние несколько больше- 7,15-7,2Å и соответствующий ему рефлекс хуже выражен по сравнению с хорошо окристаллизованным минералом, что позволяет предполагать существование некоторого количества межслоевой воды между силикатными слоями. Данные дегидратации подтверждают присутствие такой воды.В литературе имеются указания на то, что в глинах каолинит может присутствовать в различных модификациях начиная от каолинита, в котором почти все элементарные по оси b , до каолинита в котором смещены только отдельные элементарные слои. По степени совершенства структуры выделены три группы каолинита : совершенная, строгий период С; промежуточная, не совсем строгий период С ; несовершенная, не строгий период С.

Накрит и диккит. Они имеют структурные единицы, сходные со структурными единицами, которыми сложен каолинит. Однако от каолинита они отличаются способом наложения силикатных слоев. Накрит и диккит редко встречаются в глинах и практического знания не имеют. В СССР эти минералы были обнаружены в осадочных породах Карагандинского бассейна и Печорского угольного разреза.

Галлуазит. Этот минерал имеет структурную формулу Al4(SiO5) (OH)8 · 4H2O. Как видно по химическому составу, галлуазит отличается от каолинита большим содержанием воды. Прокаленный при 200-300ºС галлуазит имеет такое же содержание воды, как и каолинит; его называют метагаллуазитом. Межплоскостное расстояние галлуазита равно 10,1Å, а метагаллуазита-7,2Å. Промежуток толщиной 2,9 Å необходим для размещения дополнительных молекул Н2О, входящих в формулу галлуазита. При обработке галлуазита избыточным количеством органических жидкостей слои молекул воды замещаются слоями органических жидкостей, что сопровождается изменением базального межплоскостного расстояния от 10,1 до 11Å зависящим от характера органических молекул. Это может служить важным диагностическим признаком, в частности, если галлуазит содержится в смеси с каолинитом. Галлуазит состоит из беспорядочно наложенных один на другой каолинитных слоев. Электронно-микроскопические исследования показали, что галлуазит может встречаться в виде трубчатых индивидов. Согласно данным, внешний диаметр трубок галлуазита колеблется в пределах 0,04 – 0,09 мкм и в среднем равен 0,07 мкм. Средняя толщина трубок около 0,02 мкм. Длина их может достигать нескольких микрометров. Исследованиями галлуазита Михаловецкого месторождения (Восточная Словакия) было обнаружено, что в естественном виде он состоит из частично дегидратированных кристаллов трубчатой формы размером 0,5-1 мкм и большого количества обломков кристаллов, утративших эту форму. Кристаллической решётке галлуазита, так же как и каолинита, не свойственны замещения.

Слюды (гидрослюды). Гидролиз слюд, непрерывно происходящий в почвах и глинах, приводит к образованию различных гидрослюд. В связи с широким распространением слюдоподобных минералов было предложено назвать зти глинистые минералы иллитом. Это название предлагали не для какого – либо определённого минерала, а как общий термин для обозначения глинистого минерала, принадлежащего группе слюд. Структурная единица слюды представляет собой сочетание двух наружных тетраэдрических кремнекислородных слоёв и одного октаэдрического, заключённого между ними. Вершины тетраэдров наружных кремнекислородных слоёв этой структурной единицы повёрнуты к центру её и связаны с октаэдрическим слоем в элементарный слой путём соответствующего замещения гидроокислов атомами водорода. В слюдах некоторая часть атомов кремния всегда замещена алюминием, в результате чего возникает отрицательный заряд, который уравновешивается ионами калия, располагающимися между элементарными слоями в гексагональных пустотах поверхности кислородного слоя. Соседние слои накладываются один на другой таким образом, что ион калия отстоит на равном расстоянии от 12 атомов кислорода по шести в каждом слое. Межплоскостное расстояние слюд составляет приблизительно 10Å.

В результате гидролиза слюда постепенно переходит в гидрослюду, которая, выветриваясь, превращается в конечном счёте в каолинит или монтмориллонит. Вследствие этих превращений образуется ряд гидрослюд: гидромусковит, гидропарагонит, вермикулит, глоуконит и гидробиотит. Гидрослюды по своим структурным и физико-химическим свойствам как слоистые силикаты из трёхэтажных слоёв занимают промежуточное положение между слюдами и монтмориллонитом. Важным фактором, определяющим это промежуточное положение, является содержание в них калия и воды. Катионы калия располагаются между силикатными слоями. По существующим представлениям, от их количества зависит прочность сцепления слоев, которая является большей у слюд и наименьшей у монтмориллонитов Избыточное по сравнению с требуемой структурной схемой гидрослюд количество Н2О,согласно,представлено ионами оксония Н3О+ , который по своему расположению и роли аналогичны катионам калия. Представления о структуре гидрослюд носят общий характер, что связано с их высокой изменчивостью.


Страница: