Хроматографический анализ различных классов веществ
Рефераты >> Химия >> Хроматографический анализ различных классов веществ

Серосодержащие соединения

Основные особенности и конкретные методики анализа сернистых соединений детально описаны в литературе. Эти методики применяют главным образом для исследования серосодержащих соединений в нефтяном газе, нефти и продуктах их переработки. При анализе низкомолекулярных серосодержащих соединений наряду с катарометром используют высокочувствительные детекторы, из которых наиболее популярен пламенно-фотометрический (основанный на измерении хемилю-минесценции образующихся при сгорании серосодержащих соединений групп S2). Он обеспечивает нижний предел обнаружения 10~6—10~7% и является селективным к сере. Кроме того, селективность к сере показывают микрокулонометрический, электронозахватный и электрокондуктомет-рический детекторы. В качестве сорбентов обычно используют полярные неподвижные фазы, нанесенные на тщательно дезактивированный твердый носитель или пористые полимеры.

Сводка данных по удерживанию большого числа серосодержащих соединений на капиллярных колонках приведена в работе. Эти данные служили для идентификации компонентов, обусловливающих запах пищевых продуктов.

Галогенсодержащие соединения

При анализе галогенсодержащих соединений следует учитывать возможность коррозии аппаратуры. Поэтому дозатор, детектор и другие части прибора изготовляют из некорродирующегося материала, часто из стекла. Необходимо также предотвратить взаимодействие хлОра, хлороводорода или других разделяемых веществ с твердым носителем и нитью катарометра.

Для анализа смеси хлора, хлороводорода, хлорциаяа и других соединений использовали стеклянные колонки и катарометр с платиновыми нитями, покрытыми слоем стекла, неподвижные фазы — 5% политрифтор-монохлорэтилена и хлорированного дифенила на галопорте. Предусмотрена тщательная осушка газа-носителя (водорода) для предотвращения образования раствора хлороводородной кислоты.

Основным селективным детектором для анализа галогенсодержащих соединений является электронозахватный. Газовую хроматографию широко используют для анализа хлорированных пестицидов, в частности для определения их содержания в окружающей среде. Наряду с электронозахватным применяют микрокулонометрический детектор.

Фосфоросодержащие соединения

Хроматографические методы анализа соединений фосфора описаны в обзорах. Повышенная реакционная способность многих фосфорных соединений вызывает необходимость тщательного подбора материала аппаратуры, а также твердых носителей и детектирующих систем. Рекомендуется использовать стеклянные колонки (хотя для анализа ряда систем применяли колонки из нержавеющей стали). Из детекторов используют катарометр, пламенно-ионизационный детектор, а также детекторы, имеющие повышенную чувствительность к фосфору, — электронозахватный, термоионный, микрокулонометри-ческий и пламенно-фотометрический. Катарометры (даже изготовленные из боросиликатного стекла с танталовыми нитями) и горелки пламенно-ионизационного детектора с кварцевым наконечником обычно приходится периодически очищать от продуктов превращения анализируемых веществ путем промывки растворителями.

При работе с микрокулонометрическим детектором необходимо предварительное гидрирование фосфорных соединений до фосфина (в кварцевой печи), далее фосфин титруют в ячейке с серебряными электродами. Поскольку одновременно происходит гидрирование серы и хлора, для обеспечения селективности по фосфору между печью и детектором устанавливают патрон с оксидом алюминия или силикагелем.

Из органических соединений фосфора анализировали смеси фосфинов, фосфитов, фосфатов, фосфонатов и фосфонитов, основными неподвижными фазами при этом являлись силиконы, апиезоны, в некоторых случаях — полиэфиры. Лучшие результаты при анализе указанных групп соединений были получены на колонке с силиконом.

Большое значение имеет хроматографический анализ фосфорсодержащих пестицидов, особенно их остатков в биологических объектах. Для анализа обычно используют термоионный детектор. Для определения остаточных пестицидов в экстрактах, полученных из лука, салата и других продуктов, был применен пламенно-фотометрический детектор. При попадании в пламя горелки соединений серы или фосфора пламя несколько удлиняется, излучаемый пучок света через зеркало, фильтр и фотоумножитель преобразуется в соответствующий сигнал. В обычных условиях фотоэмиссия экранируется соответствующим цилиндром и, таким образом, свет попадает на фотоумножитель только при удлинении пламени. Для анализа соединений фосфора используют фильтр с максимумом пропускания 526 нм, а при анализе серосодержащих соединений — с максимумом пропускания 394 нм. Рекомендуется система, включающая три параллельно работающие микрогорелки, которые могут служить для детектирования фосфора, серы, а также для обычного пламенно-ионизационного детектирования остальных веществ.

Другие соединения

Выдающиеся успехи, достигнутые в области применения газовой хроматографии для анализа углеводородов и их производных, послужили стимулом для использования этого метода в химии элементорганических и неорганических веществ. Выше уже указывалось на перспективность использования электроно-захватного детектора для определения алкилсвинца в бензинах. Существует несколько методик анализа смесей тетраметил-, триметилэтил-, диметилдиэтил-, метилтриэтил- и тетраэтилпро-изводных свинца. Одна из трудностей, возникающих при проведении такого анализа, связана с присутствием в стандартных антидетонаторах галогенсодержащих соединений. Для их удаления одну из секций колонки заполняют сорбентом, в состав которого входит нитрат серебра. Так, в работе использовали колонку диаметром 6мм, состоящую из двух секций: первая длиной 3м с 10% 1,2,3-трис-р-цианэтоксипропана на обработанном гексаметилдисилазаном хромосорбе W и вторая секция длиной 0,15 м с 20% раствора нитрата серебра в карбо-ваксе 400 на обработанном 8% КОН хромосорбе W. Хромато-грамма, полученная при 72 °С и расходе азота 27 см3/мин, приведена на рис. 7.10. Продолжительность анализа составляла около 10 мин.

В работах использовали пламенно-фотометрический детектор (измерение термоэмиссии при длине волны 406 нм); нижний предел обнаружения составлял 5-10~3% (масс.) (чувствительность в 800 раз выше, чем к углеводородам).

Авторы работы детально рассмотрели возможности прямого хроматографичеокого анализа нестабильных и реакци-онноспособных соединений (легко подвергающихся гидролизу, окислению, термическим и каталитическим превращениям). Выработаны рекомендации по подбору сорбентов, их дезактивации, установлены требования к чистоте газов-носителей (влажности, содержанию кислорода), материалу аппаратуры и системам детектирования, а также к максимальной продолжительности элюирования. Это послужило основой для разработки конкретных методик определения агрессивных неорганических газов (галогенов, хлороводорода, фторидов серы, урана и т. д.), хлор-. силанов и органохлорсиланов, гидридов бора и других элементов, бор- и алюминийалкилоов, а также органических пероксидов и гидропероксидов.


Страница: