Взаимосвязь физики и химии в процессе преподавания физики в полной средней школе
Рефераты >> Физика >> Взаимосвязь физики и химии в процессе преподавания физики в полной средней школе

Следует заметить, что такого рода план не в состоянии полностью удовлетворить требования реализации межпредметной связи в преподавании физики и химии, т.к. он не отражает особенностей изложений взаимосвязанных тем в учебниках и других учебных пособиях, не включает вопросов комплексного характера, совершенно обходит вопросы межпредметной связи при решении задач в смежных курсах.

Анализ ныне действующих задачников по физике и химии показал, что имеется целый ряд задач и упражнений, развивающих у учащихся представления, одинаково ценные как для молекулярной физики, так и для химии, и что осуществление межпредметной связи при решении позволит в значительной степени дополнит, и углубить взаимосвязанные разделы смежный курсов.

Предварительное знакомство учителя физики с содержанием используемых задач смежного курса дает в одних случаях богатый иллюстративный материал для разъяснения сущности физико-химических процессов, а в других - позволяет при изложении определенной темы полностью базироваться на этом материале.

Прежде чем приступить к изучению молекулярной физики, следует иметь в виду, что этой теме предшествует ряд разделов физики и химии, описывающих различные стороны строения вещества и представляющих достаточную теоретическую и экспериментальную основу для изложения молекулярно-кинетической теории на более высоком уровне.

Учитывая разбросанность пропедевтического материала молекулярной физики смежных курсах по времени изучения в VIII‑X классах, следует внимательно продумать методику его повторения и систематизации с тем, чтобы учащиеся в момент ссылки учители на известные факты могли быстро воспроизвести их в памяти и установить взаимосвязь с изучаемой темой.

Перед научением основных положений кинетической теорий газов мы готовили учащихся к восприятию этой темы. Всему классу предлагалось повторить те разделы смежных курсов, которые могли быть использованы при изложении настоящей темы.

Так, по физике нужно было повторить следующие вопросы: первоначальные сведения о строении вещества, хаотическое (тепловое) движение молекул и внутренняя энергия (из раздела «Тепловые явления»), вес воздуха и атмосферное давление, строение атома; из химии: молекулы и атомы, атомно-молекулярное учение, роль М.В. Ломоносова и Д. Дальтона в создании основ атомно-молекулярного учении атомный и молекулярный вес; кислород и водород, их физические свойства; состав воздуха; грамм-атом, грамм-молекула и закон Авогадро.

Практика показала, что нельзя ограничиваться одним только повторением, необходимо обобщать и систематизировать накопленные сведения об атомно-молекулярной структуре вещества и характере движения частиц в различных агрегатных состояниях.

Для этого некоторым (более подготовленным) ученикам было предложено подготовить 7‑12 минутные сообщения по отдельным темам смежных курсов, а другая группа учеников готовила экспериментальное обоснование изученные теоретическим вопросам. Нами были даны задания сделать сообщения по следующим разделам:

а) роль М.В. Ломоносова и Д. Дальтона в создании основ атомно-молекулярного учения;

б) опытное обоснование строения вещества из атомов и молекул;

в) факты, подтверждающие непрерывность движения и взаимодействие частиц, из которые состоит вещество в различных агрегатных состояниях;

г) воздух, его состав и физические свойства;

д) постоянство состава сложных веществ и установление атомарного состава молекул;

е) закон Авогадро и способы определения атомных и молекулярных масс.

Помимо этого, классу предлагалось выборочно решить несколько несложных задач из химии, подобранных таким образом, чтобы учащиеся могли закрепить полученные по теме знания из смежных курсов. Решение одних задач требовало знания основных положений молекулярно-кинетической теории, другие закрепляли понятия: «атомная масса», «молекулярная масса», «грамм-атом», «моль» и методы их нахождения, а третьи представляли собой задачи на применение закона Авогадро для определения массы, объема и молекулярной массы газа при нормальных условиях.

Проведя таким образом подготовку учащихся к восприятию газовых законов и молекулярно-кинетической теории, мы приступили к изучению этих вопросов. Сделанные учащимися сообщения обобщающего характера послужили хорошим введением к изучаемой теме.

Использование знаний учащихся из химии при изложении коренных вопросов молекулярно-кинетической теории дало возможность не только сделать доступными восприятию многие вопросы курса физики, но и значительно дополнить часть из них. Знание строения одного-, двух- и многоатомных молекул позволило выяснить характер движения этих молекул и внести поправку, поясняющую зависимость физических свойства от атомного состава его молекул.

Воспользовавшись методами определения состава воздуха и законом Авогадро, можно доказать справедливость закона Дальтона. Из химии известно, что воздух состоит из смесей газов, причем по объему основная доля приходится на азот (78%) и кислород (21%).

Все газы, заполняющие определенный объем, распределены в нем равномерно. Поэтому общее давление газа на стенки, сосуда является следствием ударов молекул газовой смеси. Очевидно, последовательное удаление компонентов смеси должно сопровождаться уменьшением давления в сосуде. Воспользовавшись опытом определения состава воздуха методом сжигания красного фосфора в сосуде соединенном с манометром, можно определить, какую часть, объема воздуха в сосуде занимал кислород, и какое давление он создавал в данном сосуде, т.е. парциальное давление кислорода.

Дав формулировку закона Дальтона (это удобнее сделать после изучения закона Авогадро) можно его пояснить на основе молекулярной теории, взяв за основу закон, Авогадро. Так как давление газа при неизменной температуре зависит только от числа молекул в единице объема, то при удалении части молекул из данного объема давление газа должно уменьшиться. Но такое же уменьшение давления может быть получено за счет удаления такого же числа молекул другого, газа, что подтверждается законом Авогадро. В этом, собственно, и заключена суть связи закона Авогадро с законом Дальтона.

Независимо от способа вывода основного уравнения кинетической теории газов и уравнения Менделеева–Клапейрона, учащимся необходимо хорошо знать закон Авогадро, число Авогадро, иметь представление о молекулярной массе и методах его определения, знать соотношения между объемом, массой и молекулярным весом газа при нормальных условиях. Предварительное повторение этих понятий в определенной степени облегчит вывод основных соотношение молекулярной физики.

Использование этих данных из химии и физики позволяет раскрыть физическую сущность универсальной газовой постоянной (R), постоянной Больцмана (К), значительно упростить вывод основного уравнения кинетической теория газа, формулу средней квадратичной скорости движения молекул газа выведенной из основного уравнения кинетической теории газа.

В теме «Основные положения молекулярно-кинетической теории» при изучении методов определения массы и размеров молекул нужно полнее опираться на знания, полученные учащимися в курсе химии. Это позволяет сократить время, предусмотренное на изучение этих вопросов программой по физике и соответственно увеличить время на изучение принципиально новых вопросов и решение задач творческого характера.


Страница: