Аппарат экспрессии генов и его логика
Рефераты >> Биология >> Аппарат экспрессии генов и его логика

б. Соответствие между аминокислотами и их кодонами

Одним из загадочных моментов кодирования было отсутствие структурной комплементарности между нуклеиновыми кислотами, с одной стороны, и аминокислотными цепочками – с другой. Выход из этого концептуального тупика–ответ на вопрос, как аминокислоты спариваются с соответствующими кодонами, – был найден, когда появилась идея о существовании адаптора. Согласно этой идее, аминокислоты сначала связываются с молекулами РНК, а затем такие гибриды выстраиваются вдоль мРНК, соединяясь с ней путем комплементарного спаривания нескольких оснований в адапторной молекуле РНК с соответствующим кодоном в мРНК. Адапторная гипотеза получила строгое экспериментальное подтверждение после того, как были обнаружены тРНК и ферменты, ответственные за связывание аминокислот и тРНК, и показано, что присоединенные к тРНК аминокислоты являются прямыми предшественниками при сборке полипептида.

Если тРНК – это адапторы, то каждая аминокислота должна присоединяться только к специфической тРНК, а каждая тРНК – спариваться только с одним, соответствующим ей кодоном. Правильность первого из этих положений была доказана с открытием особых ферментов – аминоацил-тРНК-синтетаз, каждый из которых связывает одну-единственную аминокислоту с одной или несколькими родственными тРНК. Эти ферменты и катализируемые ими реакции более детально будут рассмотрены в разд. 3.5.а. Здесь достаточно сказать, что связывание аминокислот с молекулами тРНК – это первый шаг в процессе расшифровки. Правильность второго положения адапторной гипотезы – о том, что тРНК сама определяет место своей аминокислоты в полипептидной цепи – была подтверждена с помощью простого эксперимента. Одна из аминокислот, будучи связанной с соответствующей тРНК, была химически превращена в другую. После включения этой модифицированной аминокислоты в белок in vitro была установлена ее локализация в белковой цепи. Оказалось, что после превращения цистеинил-тРНК в аланил-тPHK остаток аланина, связанный с тРНК, обнаруживается в тех сайтах белковой цепи, которые обычно занимает цистеин, а не в сайтах, где обычно находится аланин. Стало ясно, что именно тРНК с присоединенной к ней аминокислотой, а не сама аминокислота определяет, с каким кодоном должно произойти спаривание.

в. Расшифровка генетического кода

Предпосылками для расшифровки кода послужили два открытия. Во-первых, было установлено, что мРНК – это информационный посредник между генами и белками. Во-вторых, обнаружилось, что мРНК, введенная в бактериальные экстракты, транслируется с образованием соответствующих белков. Прорыв в этой области произошел, когда с помощью экстрактов из клеток Е. coli была осуществлена трансляция синтетических РНК-полиуридилата, полиаденилата и полицитидилата – с образованием полифенилаланина, полилизина и полипролина соответственно. Это привело к заключению, что триплеты, состоящие только из U, А и С, кодируют соответственно фенилаланин, лизин и пролин. Затем были проделаны эксперименты с применением смешанных полимеров с варьирующим соотношением двух и трех нуклеотидов; в результате был определен состав кодонов. Однако эти данные позволили установить лишь нуклеотидный состав кодонов, но не порядок следования нуклеотидов в них. Все кодоны были в конце концов идентифицированы при помощи следующих двух экспериментов. В экспериментах первого типа сравнивали аминокислотную последовательность полипептидов, полученных in vitro с использованием синтетических мРНК, содержащих определенные повторы из двух или трех нуклеотидов. В экспериментах другого типа определяли, какая именно из аминоацил-тРНК связывается с рибосомами в присутствии каждого из возможных тринуклеотидов. Эти эксперименты позволили составить непротиворечивый словарь, в котором 61 трехнуклеотидный кодон соответствует 20 аминокислотам, а три кодона – окончанию кодирующей последовательности. В коде заложена некая неоднозначность, которая связана с точкой начала трансляции, а не с соответствием кодон-аминокислота. Эта неоднозначность обусловлена наличием альтернативных наборов триплетов, или рамок считывания, для любой полинуклеотидной последовательности. Большинство прокариотических генов транслируется при одной непрерывной рамке считывания; при альтернативных рамках на каждые 20 нуклеотидов приходится в среднем по одному терминирующему кодону.

В экспериментах по расшифровке кода, описанных выше, синтетические полинуклеотиды транслировались в условиях, не требующих точной инициации. Однако in vivo и в соответствующих условиях in vitro инициация происходит только с правильной рамкой считывания. Однозначность прочтения белок-кодирующей последовательности обеспечивается тем, что трансляция мРНК начинается только со специфического триплета – AUG, и далее расшифровывается каждый последующий триплет в направлении от 5'-конца молекулы мРНК к 3'-концу. Позднее был разработан метод быстрого секвенирования нуклеиновых кислот и белков, который позволил проверить систему кодирования непосредственно, путем сравнения последовательностей ДНК, РНК и кодируемых ими белков. Сравнительные исследования подтвердили также и то, что кодирующие последовательности действительно читаются от 5'- к 3'-концу мРНК.

г. Избыточность генетического кода

Удивительной особенностью кода оказалось то, что все аминокислоты, кроме двух, кодируются более чем одним кодоном. Эти две составляющие исключение аминокислоты, метионин и триптофан, встречаются в белках достаточно редко. Наибольшее число кодонов имеют серин и лейцин, которыми белки изобилуют. Такие достаточно часто встречающиеся аминокислоты, как цистеин, аланин, глицин, валин, а также дикарбоновые кислоты и их амиды, кодируются двумя-четырьмя кодонами каждая. Из-за такой избыточности разные нуклеотидные последовательности могут при трансляции давать одну и ту же аминокислотную последовательность. Итак, если мы знаем нуклеотидную последовательность, то можем однозначно определить последовательность белка, обратное же проделать невозможно.

Сигналом для остановки синтеза белка служит любой из трех кодонов: UAA, UAG или UGA. Кодон AUG выполняет двойную функцию: он детерминирует аминокислоту метионин и в определенных последовательностях обозначает начало сегмента, кодирующего белок.

Избыточность кода имеет одну интересную особенность: наибольшее число вариаций в кодонах, детерминирующих данную аминокислоту, приходится на третью позицию. Например, аминокислоты глицин, валин, пролин, аланин и треонин кодируются четырьмя кодонами каждая, и в каждом случае эти четыре кодона различаются только нуклеотидами в третьей позиции. Если какая-то аминокислота кодируется двумя кодонами, то последние различаются только пуринами или пиримидинами, находящимися в третьей позиции. И только кодоны для лейцина, серина и аргинина различаются нуклеотидами, находящимися в первой, второй или обеих позициях. Поэтому мутации, приводящие к заменам нуклеотидов в третьей позиции, часто не сопровождаются изменением аминокислотной последовательности. Кроме того, код устроен так, что при замене нуклеотидов даже в первой или второй позиции некоторых кодонов в полипептид включается структурно родственная аминокислота, сводя тем самым к минимуму нарушения во вторичной структуре белка. Кодоны для гидрофобных аминокислот, например фенилаланина, лейцина, изолейцина и валина, различаются только одним нуклеотидом. Аналогичная ситуация наблюдается и для кодонов серина и треонина или аланина и глицина.


Страница: