Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах
Рефераты >> Биология >> Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах

Как следует из данных ИК-спектроскопии и рентгеноспектрального анализа, с увеличением процентного содержания ПЭК в растворе, используемом для модификации мембран, содержание четвертичных аммониевых оснований на поверхности мембран растет. Вместе с этим меняются и транспортные свойства модифицированной мембраны.

Четвертая глава диссертации посвящена исследованию механизмов массопереноса в мембранных системах при обессоливании разбавленных солевых растворов в интенсивных токовых режимах.

Важную информацию дает сравнение ВАХ и рН раствора в ОДС исходной МА-40 и модифицированной полиэлектролитным комплексом МА-40М мембран. Как следует из рисунка 3, указанная модификация поверхности мембраны МА-40 приводит к снижению интенсивности генерации ионов H+ и OH−: изменение рН раствора в ОДС мембраны МА-40М5% меньше, чем для исходной мембраны МА-40 и гомогенной мембраны АМХ, взятой для сравнения. В другом эксперименте, при обессоливании 0.005 М раствора NaCl (V=1.6 см/с и h=1.1 мм) числа переноса ионов OH− для мембран МА-40 и МА-40М5% при =1.5 равны 0.39 и 0.22 соответственно. Причиной этого явления служит трансформация вторичных и третичных аминогрупп в четвертичные в поверхностном слое МА-40.

Рисунок 3 – ВАХ и изменение рН раствора в обедненном диффузионном слое в зависимости от плотности тока при вертикальном положении мембранных систем

Хорошо известно, что каталитическая активность четвертичных аминогрупп в отношении диссоциации воды существенно ниже, чем вторичных и третичных, что и объясняет изменение хода кривых рН на рисунке 3. Интересно другое: при значениях приведенного потенциала выше 1.5 В плотность тока через МА-40М5% выше, чем через МА-40. Эксперимент проведен в разбавленном растворе (0.005 М) NaCl при не слишком малой скорости течения раствора (0.32 см/с) − в условиях, когда гравитационная конвекция исключена. Принимая во внимание, что генерация ионов H+ и OH− на МА-40М5% низкая, эффектом экзальтации тоже можно пренебречь. В этом случае единственным возможным механизмом прироста сверхпредельного тока на модифицированной мембране может быть электроконвекция, причем, учитывая значительные скачки потенциала (более 1.5 В), можно утверждать, что механизмом электроконвекции является электроосмос второго рода. Учитывая также, что модификация мембраны МА-40 не привела к заметным изменениям морфологии поверхности на микрометрическом уровне, можно прийти к выводу, что единственным важным для электрохимического поведения мембраны МА-40 эффектом ее поверхностной модификации явилось снижение интенсивности генерации ионов H+ и OH−, что затем привело к усилению электроконвекции и ускорению роста сверхпредельного массопереноса.

Убедительное доказательство существования электроконвекции представляет серия экспериментов, представленная на рисунке 4. При допредельных токах форма кривых для различных мембран одинакова. При сверхпредельных токах на ХП МА-40М5% появляются периодические осцилляции, если превышается некоторое «пороговое» значение потенциала (около 1.5 В). С ростом тока периодические осцилляции сменяются хаотическими. Сценарий развития осцилляций находится в хорошем согласии с теоретическими расчетами И. Рубинштейна и Б. Зальцмана.

а

б

в

Рисунок 4 – Хронопотенциограммы, полученные при вертикальном положении мембран AMX, МА-40 и МА-40М5% в 0.005 М растворе NaCl при плотности тока 0.5 (а), 1.75 (б) и 2.5 (в) мA/cм2 (V=0.32 см/с, h=7.0 мм)

Оценки, проведенные по формулам (3), (4), показывают, что развитие электроконвекции приводит к значительному уменьшению толщины диффузионного слоя по сравнению с величиной , рассчитанной по конвективно-диффузионной модели. Так, в системе МК-40/0.005 М NaCl/ МА-40 (V=1.6 см/с и h=1.1 мм) при =2.0 0/¢=1.64 для катионообменной мембраны и 0/¢=1.04 для немодифицированной мембраны МА-40. В то же время для модифицированной мембраны МА-40М5% 0/¢=1.43 при тех же условиях.

Связь скорости генерации ионов H+ и OH− и интенсивности электроконвекции прослеживается не только в рассмотренном выше примере, но и в других случаях.

Обнаружено, что в горизонтальном положении, когда ОДС находится под мембраной и гравитационная конвекция не возникает, в системе с мембраной АМХ и 0.02 М раствором NaCl (V=0.39 см/с, h=5.8 мм) экспериментально определенная из ВАХ предельная плотность тока в пределах ошибки эксперимента совпадает с теоретической величиной , рассчитанной по уравнению (2). В случае катионообменных мембран CMX и Nafion-117 при тех же условиях ilim exper в 1.3-1.5 раза превышает (рисунок 5).

Рисунок 5 – ВАХ мембран AMX (1), СМХ (2), Nafion-117 (3) и MK-40-Nf, обращенной в камеру обессоливания гетерогенной (4) и гомогенной (5) стороной

Тот факт, что при зависимость сохраняет вид, близкий к линейному, а приведенный скачок потенциала не превышает 300 мВ, позволяет предположить, что в этих условиях причиной сверхпредельного переноса является электроосмос 1-го рода. Механизм электроконвекции переходит от электроосмоса 1 к электроосмосу 2, по-видимому, вблизи точки перегиба на ВАХ, после которой начинается быстрый рост тока. Полученные данные свидетельствуют о том, что в сходных условиях электроконвекция возле мембраны АМХ развивается существенно слабее. Причина различного поведения катионо- и анионообменных мембран, а также мембран МА-40 и МА-40М в отношении развития электроконвекции, скорее всего связана со стоксовским радиусом и числами гидратации противоионов, формирующих область пространственного заряда (ОПЗ). Во-первых, стоксовский радиус и число гидратации анионов Cl−, формирующих пространственный заряд возле АМХ, существенно ниже соответствующих величин для катионов Na+, образующих пространственный заряд возле СМХ и Nafion-117. Поэтому при одной и той же плотности заряда и его протяженности интенсивность электроконвекции возле СМХ и Nafion-117 выше. Во-вторых, при диссоциации воды возле АМХ и МА-40 (которая практически отсутствует у поверхности Nafion-117 и МА-40М) ионы Н+ (ОН−), стоксовский радиус которых близок к нулю, попадают в ОПЗ и гасят электроконвекцию: эти ионы переносят заряд по «эстафетному» механизму от одной молекулы воды к другой без приведения в движение объема жидкости. В-третьих, гидрофобность поверхности СМХ, Nafion-117 и мембран МА-40М может способствовать скольжению жидкости вдоль границы мембрана/раствор.


Страница: