Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах
Рефераты >> Биология >> Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах

Таким образом, по всей видимости, именно электроконвекция первого рода, протекающая более интенсивно в присутствии катионов соли в ОПЗ, ответственна за различное поведение анионообменных и катионообменных мембран при допредельных токах. Эта гипотеза проливает также немного больше света на тот известный факт, что генерация ионов Н+ (ОН−) на катионообменных мембранах начинается примерно при тех же плотностях тока, что и на анионообменных, несмотря на то, что для ионов натрия в полтора раз меньше, чем для хлорид-ионов. С ростом скачка потенциала электроосмос 1 снижает эффективную толщину диффузионного слоя у катионообменной мембраны, что все время «сдвигает» предельное состояние (а вместе с ним и начало генерации ионов Н+ и ОН−) в сторону больших токов.

Рассмотрим теперь результаты экспериментов с мембранами, имеющими одинаковые ионогенные группы, но разную степень однородности поверхности. Установлено, что в случае анионообменных мембран ilim exper, найденный из ВАХ, а также сверхпредельный массоперенос при заданном скачке потенциала меньше для мембран с гетерогенной поверхностью. Этим мембранам, как правило, отвечают также более низкие переходные времена ХП и более интенсивная диссоциация воды. В то же время, гетерогенные катионообменные мембраны, по крайней мере, при определенных условиях, демонстрируют более высокие значения ilim exper и более высокий массоперенос при сверхпредельных токах по сравнению с гомогенными (рисунок 5). Появление на поверхности гетерогенных мембран тонкой гомогенной пленки, содержащей фиксированные группы той же полярности, что и группы мембраны, приводит к сближению их поведения в наложенном электрическом поле с поведением гомогенных мембран (рисунок 5).

Отличия в поведении гомогенных и гетерогенных мембран с одинаковой природой ионогенных групп обусловлены различным распределением линий тока вблизи поверхности мембраны. Возле гомогенной поверхности линии тока распределены равномерно и направлены перпендикулярно поверхности. У проводящих участков поверхности гетерогенных мембран эти линии сгущаются, в результате локальная плотность тока через проводящие участки увеличивается и, как следствие, предельное состояние на этих участках достигается при меньшей средней плотности тока на мембране. По этой же причине при наложении постоянного тока скачок потенциала на мембране с гетерогенной поверхностью растет быстрее со временем и достигает более высоких стационарных значений, чем на гомогенной мембране, если вклад других механизмов переноса, таких как электроконвекция, незначителен. Наконец, более высокая локальная плотность тока через проводящие участки обусловливает более интенсивную диссоциацию воды. Уменьшение приповерхностной концентрации противоионов у проводящих участков частично компенсируется тангенциальной диффузией электролита из раствора, прилегающего к непроводящим участкам.

Наряду с негативными последствиями неравномерного распределения линий тока, описанными выше, имеются и положительные стороны этого явления. Неравномерное распределение локальной плотности тока порождает неравномерность в распределении плотности пространственного заряда по поверхности гетерогенных мембран. Из теории электроконвекции (И. Рубинштейн, М.Х. Уртенов) известно, что такая неравномерность облегчает развитие электроконвекции и обусловливает ее большую интенсивность при заданном скачке потенциала. Однако, как обсуждалось выше, малый стоксовский радиус хлорид-ионов возле поверхности анионообменной мембраны не способен обеспечить эффективное увлечение молекул воды, в силу чего относительно невысокая электроконвекция у неоднородной поверхности этих мембран, видимо, неспособна компенсировать «вред», наносимый искривлением линий тока.

Интенсивность электроконвекции возле катионообменных мембран выше (стоксовский радиус ионов Na+ больше, чем ионов Cl−, а генерация ионов Н+ и ОН− слабее), и, видимо, положительный эффект увеличения массопереноса, вызванный искривлением линий тока, перевешивает в ряде случаев отрицательный. Таким образом, данная работа дает фактический материал в пользу развития направления по созданию ионообменных мембран путем микродизайна их поверхности с целью увеличения скорости массопереноса в сверхпредельных токовых режимах.

Выводы

Проведены комплексные экспериментальные исследования влияния структурных, физических и химических свойств поверхности ионообменных мембран на их поведение в допредельных и сверхпредельных токовых режимах при электродиализе. Установлено, что электрохимическое поведение мембранных систем в основном определяется свойствами поверхности мембран: модификация поверхности мембран может приводить как к росту, так и к уменьшению скорости массопереноса в сверхпредельных токовых режимах.

Искусственная гомогенизация поверхности гетерогенных мембран делает их электрохимические характеристики (скачок потенциала при заданном токе, величина переходного времени на хронопотенциограммах, значения плотностей предельного тока и тока начала диссоциации воды на проводящих участках поверхности, величина потоков генерируемых H+, OH– ионов) сходными с характеристиками гомогенных мембран.

Обработка анионообменных мембран полиэлектролитным комплексом, содержащим диметидиаллиламмоний хлорид, позволяет снизить каталитическую активность фиксированных групп в приповерхностном слое. Ослабление генерации ионов H+ и OH− на поверхности мембран приводит к усилению электроконвекции раствора в прилегающем к мембране обедненном диффузионном слое.

Доказано, что в разбавленных растворах основным механизмом сверхпредельного прироста массопереноса в ионообменных мембранных системах является электроконвекция. При допредельных токах электроконвекция протекает по механизму электроосмоса первого рода, а при сверхпредельных токах − как электроосмос второго рода. Электроконвекция усиливается при увеличении стоксовского радиуса противоионов, формирующих пространственный заряд у поверхности мембраны, а также при наличии на поверхности мембран проводящих и непроводящих электрический ток участков. Таким образом, показана принципиальная возможность интенсификации сверхпредельного массопереноса через ионообменные мембраны путем формирования гетерогенной поверхности с заданными свойствами.

Основные результаты изложены в следующих публикациях:

Володина Е.И., Лопаткова Г.Ю, Письменская Н.Д., Никоненко В.В. Влияние гетерогенности поверхности на массообменные характеристики мембран // Тезисы докладов Всероссийской научной конференции молодых ученых и студентов «Современное состояние и приоритеты развития фундаментальных наук в регионах». Просвещение-Юг. Краснодар. 2004. Т.2. С. 168-170.

Лопаткова Г.Ю., Володина Е.И., Письменская Н.Д. Возможности Corel PHOTO-PAINT при обработке фотографий поверхности ионообменных мембран // Сборник материалов конференции ИВТН-2004 «Информационно-вычислительные технологии в решении фундаментальных проблем и прикладных научных задач». Москва. 2004. С. 28. Также на http://www.ivtn.ru/.


Страница: