Волоконно-оптические линии связи
Рефераты >> Физика >> Волоконно-оптические линии связи

В волокне со ступенчатым профилем показателя преломления преобладает модовая дисперсия вследствие большой разницы времен пробега между осевым и граничными лучами. В градиентном световоде с оптимальным профилем показателя преломления обе дисперсии становятся приблизительно одинаковыми. Напротив, в мономодовом волокне модовая дисперсия не имеет значения, и только материальная дисперсия определяет ха­рактеристику передачи.

И третий фактор, влияющий на качество передачи — полноводная дисперсия. Она возникает только в мономодовых световодах, а именно потому, что единственная способ­ная к распространению мода имеет скорость распространения, зависящую от длины вол­ны.

Анализ причин и влияния материальной дисперсии на характеристики передачи позволили сделать выводы, которые представляют исключительный интерес для практи­ки и оказывают решающее влияние на дальнейшее развитие световодной техники. Преж­де всего, выяснилось, что уширение импульса, вызванное материальной дисперсией, в значительной степени определяется микроструктурой зависимости показателя преломле­ния данного светопроводящего материала от длины волны. Если на графике такой зави­симости имеется участок, на котором кривая стремится к нулю, то на этой длине волны можно ожидать минимального уширения импульса и пренебречь влиянием материальной дисперсии.

Действительно, на кривых профиля показателя преломления можно найти такую точку, например, для кварцевого стекла при l = 1,27mkm. Это означает, что если среди узкополосных источников света имеются такие, для которых материальная дисперсия равна нулю, то соответственно пропускная способность принимает максимальное значе­ние.

Исходя из значений материальной дисперсии можно рассчитать для различных длин волн уширение импульса и из этого затем скорость передачи для лазера (спектральная ширина около 2 нм) и для светоизлучающего диода (спектральная ширина около 40 нм). Даже для светоизлучающего диода в этой области длин волн можно ожи­дать скорости передачи свыше 1 Гбит/с на 1 км. Для лазеров экспериментально было по­лучено значение 1,4 Гбит/с на 1 км! Понятно, что эта область длин волн нулевой диспер­сии световода представляет большой интерес.

Только что названные характеристики передачи реальны и указывают на техниче­ские возможности, которые, имеются в простых многомодовых световодах и сегодня еще не исчерпаны. Нельзя забывать, однако, что столь высоких значений скорости передачи можно достигнуть только путем обеспечения оптимальных параметров светоизлучающе­го диода для определенной длины волны, которые для других длин волн создают худшие условия передачи. Кроме того, требуется соблюдение очень малых, допусков при изго­товлении световода для обеспечения требуемого профиля показателя преломления, что, несомненно, удорожает световод.

Интересны и важны также изложенные выше соображения о том, что в любом слу­чае не может быть создан световод с максимальной пропускной способностью. Для большинства областей пропускная способность применения световода достаточна. При этом оказывается возможным применить более простые электрические соединители и получить больший КПД при соединении и т. д.

5.4 Оптические кабели, их конструкции и свойства

Одиночная двухпроводная цепь, одиночная коаксиальная пара являются в элек­трической технике связи редким явлением. Как правило, электрический кабель состоит из нескольких пар. Общая броня защищает их от окружающего влияния различного рода — повреждения грызунами, влажности и механических воздействий.

Световод, так же как и электрический проводник, помимо применения в качестве одиночного проводника света включается в состав оптического кабеля, и к нему предъяв­ляются требования, аналогичные требованиям, предъявляемым к электрическим кабелям.

Однако электрические проводники и световоды настолько сильно различаются, что было бы удивительно, если бы электрические и оптические кабели не отличались между собой по конструкции, способам монтажа, прокладки и эксплуатации. Вместе с тем имеется многолетний опыт механической защиты тонких проводников (медные провода толщиной в десятые доли миллиметра используются достаточно широко), который может быть использован для защиты чувствительных стеклянных волокон.

Когда речь идет о различии между световодами и медными проводниками, необ­ходимо назвать основное свойство, которое до сих пор вообще еще не называлось: абсо­лютная нечувствительность световода по отношению к помехам от электрического и магнитного полей. Здесь можно было бы сказать, что экранирование электрических кабе­лей для защиты их от внешних электромагнитных помех абсолютно излишне в оптиче­ских кабелях.

Основную роль играет, конечно, сам материал — стекло, которое выступает теперь в качестве заменителя ценного цветного металла — меди. Этот материал-заменитель обусловливает большой экономический выигрыш. Запасы меди в мире постоянно исто­щаются, а цены растут. По некоторым прогнозам еще на исходе столетия месторождения на суше, известные сегодня, будут исчерпаны. Основной материал для стеклянных опти­ческих волокон — кварцевый песок — имеется в больших количествах. В технике связи несколько килограммов меди могут быть заменены 1 г стекла высокой очистки, если за основу принять одинаковую пропускную способность кабеля.

Из этого соотношения следует еще одно преимущество: оптические кабели легче электрических. Это особенно заметно в кабелях с высокой пропускной способностью — из-за малого диаметра световода. Ясно, что оба эти свойства являются, непосредственным преимуществом во многих областях применения.

Наконец, необходимо указать на фактор гальванической развязки передатчика и приемника. В оптической системе они электрически полностью изолированы друг от дру­га, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют силу.

Наряду с этими полезными параметрами необходимо конечно, назвать другие, по которым оптические волокна уступают меди и которые должен учитывать конструктор кабелей.

Это, прежде всего чувствительность незащищенного волокна к водяному пару. Это критическое свойство было очень скоро обнаружено, но было также обнаружено и противодействие ему: непосредственное покрытие световода защитной пленкой толщи­ной несколько микронметров непосредственно в процессе вытягивания волокна.

Эта защитная оболочка, в основном состоящая из полимера, полностью защищает световод. Она повышает также механическую прочность световода и его упругость. Кро­ме того, обеспечивается постоянство параметров при неблагоприятных окружающих ус­ловиях; без защитной оболочки они снижаются уже через несколько часов или дней.

Механический предел прочности при разрыве для волокна довольно высок и соот­ветствует прочности стали. Однако стекло хрупко, изгибы с малым радиусом волокно не выдерживает и ломается. Но и этот недостаток относителен: стекловолокно, снабженное упомянутым тонким защитным слоем, вполне можно обмотать вокруг пальца, а некото­рые сорта - даже вокруг тонкого карандаша. Учитывая это типичное свойство стекла, необходимо, конечно, принимать меры защиты в тех случаях, когда несколько световодов объединяются в одном кабеле, который в дальнейшем будет изгибаться и скручиваться. Это случается при намотке на барабан и при укладке. Конструкция кабеля должна быть такой, чтобы устранить механические перегрузки световода. Но опасны не только разру­шение волокна, но и микроизгибы. Они возникают, когда свстопроводящие волокна ле­жат на шероховатой поверхности в условиях приложения растягивающей силы, и могут вызывать дополнительные световые потери. Это явление можно наблюдать в демонстра­ционном опыте, когда к светопроводящему волокну, туго, виток к витку намотанному на барабан, подводится видимый свет, например от Не—Ne лазера. Весь барабан при этом излучает яркий красный свет, что указывает на световые потери, вызванные микроизги­бами.


Страница: