Микроорганизмы, выделенные из различных природных жиров
Рефераты >> Биология >> Микроорганизмы, выделенные из различных природных жиров

Классификацию жиров производят по различным признакам. В первую очередь их разделяют в зависимости от природы их происхождения на жиры животных и растительные. Каждая из этих групп в зависимости от количественного содержания твердых глицеридов, подразделяется на жиры жидкие при нормальной температуре (20°С) и жиры твердые. Жиры животного происхождения делят на:

а) жиры наземных животных;

б) жиры молока;

в) жиры птиц;

г) жиры морских животных и рыб;

д) жиры земноводных и пресмыкающихся. [6].

Липиды – большая группа природных веществ, разнообразных по химической структуре и физико-химическим свойствам. Имеется несколько трактовок понятия липиды и различных схем их классификации, основанных на свойствах этих веществ. Общее свойство липидных соединений – способность растворяться в эфире, хлороформе и других органических растворителях (но не в воде) [7].

Липиды по строению можно подразделить на две большие группы. 1. Простые липиды, или нейтральные жиры, представленные у большинства организмов ацетилглицеринами, т.е. глицериновыми эфирами жирных кислот (свободные жирные кислоты встречаются в клетках лишь как минорный компонент). 2. Сложные липиды, к которым относятся липиды, содержащие фосфорную кислоту в моно - или диэфирной связи, – это фосфолипиды, в число которых входят глицерофосфолипиды и сфинголипиды. К сложным липидам относятся соединения, связанные гликозидной связью с одним или несколькими остатками моносахаридов, или гликолипиды, а также соединения стероидной и изопреноидной природы, в том числе каротиноиды [8].

Первое доказательство того, что липиды содержат физиологически необходимые для высших животных соединения, получено в 1926 г. голландскими исследователями Ивансом и Буром. Несколько позднее было установлено, что этими соединениями являются полинасыщенные жирные кислоты (линолевая, линоленовая и арахидоновая) – физиологически необходимые для большинства живых организмов (витамин F).

В дальнейшем было установлено, что и в клетках микроорганизмов липиды выполняют самые различные биологические функции. Они входят в состав таких ответственных структур, как клеточная мембрана, митохондрии, хлоропласты и другие органеллы. Липопротеиновые комплексы играют важную роль в процессах метаболизма. С ними в значительной мере связаны активный перенос различных веществ через пограничные мембраны и распределение этих веществ внутри клетки. С составом липидов во многом связаны такие свойства организмов, как термотолерантность и термофильность, психрофильность, кислотоустойчивость, вирулентность, устойчивость к ионизирующей радиации и другие признаки. Кроме того, липиды могут выполнять функцию запасных продуктов. К таковым относятся, поли-β-гидроксимаслянная кислота, образуемая многими бактериями, и ацетилглицерины, в частности триацетилглицерин, накапливаемые в больших количествах некоторыми дрожжами и другими представителями грибов [9].

В состав природных липидов входят остатки длинноцепочечных спиртов с четным числом атомов углерода. Кроме того, высшие спирты, принимающие участие в образовании молекул липидов, чаще всего имеют неразветвленную углеродную цепь и могут быть как насыщенными, так и ненасыщенными. Наиболее распространены следующие виды спиртов: глицерин – трехатомный спирт, наиболее широко встречающийся полиол в липидах, входит в состав нейтральных липидов и фосфолипидов; диолы – двухатомные спирты, обнаружены и выделены из различных природных источников, входят в состав полярных липидов, распространены значительно меньше, чем глицерин; миоинозит (мезоинозит, i-инозит) – шестиатомный циклический спирт, найден в составе липидов растительных и животных тканей.

В составе липидов различного происхождения найдены разнообразные углеводные молекулы, относящиеся к различным классам моносахаридов: гексозы, аминогексозы, дезоксигексозы и др. [10].

Распад нейтральных липидов происходит за счет гидролитического действия липаз. Распад приводит к образованию глицерина и жирных кислот, иногда фосфатов и аминоспиртов.

Глицерин, образующийся в этой реакции, фосфорилируется до глицеро-1-р, дегидрируется до диоксиацетон-р и участвует дальше в процессах гликолиза.

Наиболее важную роль при распаде органических веществ играют ферменты – биокатализаторы, образующиеся в клетке и представляющие собой либо простые белки, либо сложные, содержащие не аминокислотные компоненты. Коферменты часто участвуют в переносе электронов или функциональных групп. Как и витамины, они входят в качестве необходимого компонента в пищу и не могут синтезироваться по крайней мере, в органах высших организмов.

При распаде жирных кислот в результате β-окисления на первой стадии, жирные кислоты активируются реакцией с коферментом А (НS-CoA) в присутствии молекулы аденозинтрифосфата (АТФ). Образующийся ацил-СоА постепенно окисляется при помощи дегидрогеназ и гидротаз до β-окси и β-кетокислот, из которых молекула ацетил-СоА («активная уксусная кислота») образуется под действием другой молекулы кофермента СоА со свободной SH-группой. Таким образом, молекула жирной кислоты распадается в конце концов до продуктов, имеющих всего два углеродных атома, превращающихся в цикле трикарбоновых кислот.

Ацетил-СоА является ключевым промежуточным соединением в превращении всех питательных веществ. Образуется в аэробных условиях из сахаров, аминокислот, липидов (при β-окислении и при гидролитическом распаде глицерина).

Восстановленные коферменты постепенно окисляются в дыхательной цепи с постепенным образованием макроэргических фосфатов. С точки зрения образования АТФ, окисление жирных кислот составляет основной энергетический резерв организма. Если для эукариотов β-окисление происходит в митохондриях, то для прокариотических организмов этот процесс протекает в цитоплазматической мембране [11].

В организме жиры локализованы в жировых клетках и характеризуются высокой скоростью метаболизма. Приведем реакцию β-окисления жирных кислот:

Н3С-СН2-СН2(СН3)-СОSCoA СH3-CH=C(CH3)-COSCoA CH3-CH(OH)-C(CH3)-COSCoA CH3-CO-C(CH3)-COSCoA -OOC-CH(CH3)-COSCoA -OOC-CH2-CH-COSCoA Сукцинат

В конечном итоге жирная кислота окисляется до сукцината [12].

В целом, окисление липидов можно представить следующей схемой, представленной на рисунке 1

Липиды


Страница: