Молекулярно-генетический уровень живых структур
Рефераты >> Биология >> Молекулярно-генетический уровень живых структур

Кроме перечисленных главных азотистых оснований, в состав некоторых нуклеиновых кислот в небольшом количестве входят еще друге азотистые основания, получившие название минорных. Так, у высших животных и высших растений в ДНК небольшая часть цитозинов заменена 5-метилцитозином, а ДНК ряда фагов весь цитозин заменен 5-оксиметилцитозином. В некоторых типах РНК в незначительном количестве встречаются псевдоуридин, метилгуанин и другие минорные основания.

Различные виды РНК служат посредниками для переноса генетичекой информации с ДНК на белки. Только они находятся в контакте с аминокислотами и белками. Поэтому естественно предположить, что РНК - первая информационная биомолекула, возникшая в предбиологической среде.

1.4 Распределение генов

То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи различных генов. Одних только признаков, сцепленных с Х-хромосомой, несколько сотен, а на самой короткой аутосоме расположены также сотни генов. Как это согласуется с менделеевским законом независимого распределения признаков? Это значит, что закон независимого распределения признаков применим только для генов, расположенных на разных хромосомах; сначала ученым необходимо было определить основные законы и выяснить природу наследственности на примере простейших признаков. На самом деле многие гены расположены на одной и той же хромосоме, поэтому они, как правило, наследуются вместе. Такие гены называются сцепленными. Одно из достижений современной генетики и заключается в том, что созданы карты сцепления для многих признаков. На этих картах показано также относительное положение генов на хромосомах, эти карты имеют не только теоретическое, но и практическое значение.

Место, которое ген занимает на хромосоме, называется локусом. За исключением тех редких случаев, когда происходит перестройка хромосомы, у всех представителей отдельного биологического вида каждый ген имеет строго определенный локус. О существовании генов узнали по мутациям, которые обычно изменяют гены, делая их дефектными или необычными. Большинство наследственных признаков известны по таким наследственным заболеваниям, как гемофилия, дальтонизм и фенилкетонурия. Нормальные аллели гена называются дикими, хотя, как правило, этот термин применим только для некоторых организмов, с которыми проводят опыты. Гены, определяющие такие признаки человека, как цвет глаз или группу крови, обычно дикими не называются. В естественной популяции имеется много аллелей одного гена. Мутантный аллель можно использовать как маркер, помогающий определить местоположение гена. Например, дефектный ген гемоглобина, который вызывает серповидноклеточную анемию, можно использовать как маркер для определения локуса генов гемоглобина вообще. Без такого варианта гена у нас бы было мало возможностей исследовать эти гены.

Генетическая карта хромосомы представляет собой линию, на которой отмечены локусы генов и относительные в единицах карты. Хотя некоторые методы с использованием микроскопа позволяют ученым непосредственно определить локус гена на хромосоме, обычно устанавливают локус гена относительно других генов. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Распределение аллелей в этих организмах называется родительской комбинацией.

В профазе мейоза гомологичные пары выстаиваются напротив друг друга и удерживаются вместе в хиазмах, то есть в точках, где их хроматиды переплетаются друг с другом. Иногда в точке хиазмы хроматиды разрываются и обмениваются друг с другом сегментами. Такой процесс называется кроссинговером. Если кроссинговер происходит между локусами двух генов, то аллели этих генов перераспределяются между хромосомами.

Определить расстояние между генами человека – достаточно сложно. У большинства организмов, скрещивать которые можно по выбору, весь процесс состоит из двух стадий. Сначала скрещиваются между собой гомозиготы с нужными аллелями и получается и получается гетерозиготное потомство, у которого могут происходить рекомбинации; затем скрещиваются особи второго поколения, и изучается их потомство. У людей первая и вторая стадии соответствуют браку, над которым мы не властны, и поэтому остается только изучать потомков от таких браков. Установив расстояние между двумя генами, можно по одному добавлять и другие гены.

Легче всего определять положение генов, сцепленных с полом, потому что расположение аллелей как минимум одной из Х-хромосом женщины можно определить по Х-хромосоме ее отца, а генотип Х-хромосомы ее сыновей также определяется непосредственно. Построить карту аутосомных хромосом труднее. В наше время созданы превосходные карты для некоторых лабораторных и культурных растений и животных.

1.5 Репликация нуклеиновых кислот

При размножении любых форм жизни (кроме вирусов РНК-типа) происходит увеличение числа молекул ДНК. У многоклеточных организмов из двух слившихся гамет получается тысячи, миллионы или миллиарды клеток тела; у бактерий и простейших из одной родительской клетки возникают две, из них четыре и затем, в геометрической прогрессии, множество новых; у ДНК-содержащих вирусов вместо одного вириона образуется десятки и сотни вирионов следующего поколения. Во всех случаях каждая исходная молекула ДНК каким-то образом дает начало огромному числу новых, причем сохраняются в неизменном виде все особенности, присущие ДНК данного живого существа и различные у разных из них. Лишь очень редко, когда возникает мутация, происходят небольшие искажения этой хранящейся в ДНК генетической информации, но они крайне ничтожны по сравнению с колоссальным ее объемом, записанным в чередовании азотистых оснований молекулы.

Процесс получения двух копий (или реплик) изначальной молекулы ДНК называется репликацией, и модель Уотсона-Крика объясняет, как это возможно. В каждой молекуле ДНК одному нуклеотиду соответствует комплементарный ему нуклеотид, и одна цепь ДНК целиком комплементарна другой. Репликацию выполняет сложный фермент ДНК-полимераза, которая начинает разрывать двойную спираль, словно застежку-молнию, оставляя по одному основанию на каждой цепи. Суть процесса сводится к тому что молекулы ДНК-полимеразы движутся вдоль каждой цепи и синтезируют комплементарные цепи, образуя таким образом двойную спираль вместо одинарной. Каждое свободное основание связывается исключительно с компленментарным нуклеотидом. Например, открытый цитозин привлекает к себе новый гуанин, а открытый аденин – тимин. В клетке содержится достаточно свободных нуклеотидов, потому что в процессе метаболизма они образуются постоянно, и полимераза связывает парные основания вместе. Так, каждая цепь определяет формирование комплементарной ей цепи с последовательностью, идентичной последовательности прежней парной цепи. В конечном счете получаются две спирали, идентичные начальной молекуле.


Страница: