Молекулярно-генетический уровень живых структур
Рефераты >> Биология >> Молекулярно-генетический уровень живых структур

Нуклеотидная последовательность ДНК должна хранить генетическую информацию, и последнее предположение, вытекающее из модели Уотсона – Крика, состоит в том, что мутации происходят в тех случаях, когда одно основание заменяется на другое или когда цепь рвется и перестраивается. Такое случается редко, но если происходит, то в клетке имеются механизмы исправления некоторых ошибок. Тем не менее в каждом организме содержится огромное количество ДНК, и если вероятность вставки ошибочного основания равна только одной миллионной, то на каждые 10 миллионов оснований будет приходится 10 ошибок, и мутация становится силой, с которой следует считаться.

1.6 Генетический код

Исследования, приведшие к расшифровке генетического кода, из которых особенно большое значение имени генетические работы Крика с сотрудниками в Англии и биохимические работы Ниренберга, Очоа и Корнберга в США, вскрыли следующие основные свойства кода:

1) Код неперекрывающийся.

2) Каждая аминокислота кодируется группой из трех нуклеотидов (триплетом нуклеотидов).

3) Последовательность нуклеотидов в молекуле нуклеиновой кислоты считывается с закрепленной точки. Это определяет, как считывать в виде триплетов всю длинную цепь нуклеотидов. Не имеется никаких запятых, разделяющих триплеты и указывающих, как выбирать нужные.

4) Код вырожденный, т. е. одна аминокислота может кодироваться не одним, а несколькими определенными триплетами нуклеотидов.

Представимы два принципиально различные кода – неперекрывающийся и перекрывающийся. Объяснить разницу между ними можно следующим примером. Допустим, что каждая аминокислота определяется сочетанием трех нуклеотидов и что считываемый отрезок мРНК имеет следующую структуру (структура выбрана произвольно, указаны начальные буква названий азотистых оснований нуклеотидов: А – аденин, Г – гуанин, Ц – цитозин, У – урацил): ААЦУГГЦУАГЦЦУУГ

Если код неперекрывающийся, то считывание группами по три нуклеотида может происходить только одним способом, а именно: А-А-Ц-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

Если же код перекрывающийся, то считывание группами по три нуклеотида должно происходить тремя способами:

1-й способ: А-А-Ц-У-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

2-й способ: А-А-Ц-У-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

3-й способ: А-А-Ц-У-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

Доказательством того, что код неперекрывающийся, служат данные, полученные при изучении первичной структуры белков разных мутантов. Частицы вируса табачной мозаики (ВТМ) состоят из сердцевины, образованной молекулой РНК, и окружающего ее белкового капсида. Молекулы капсидного белка построены из 158 аминокислот, расположение которых в молекуле известно. Вирус обрабатывали азотистой кислотой – веществом, вызывающим мутации дезаминированием азотистых оснований отдельных нуклеотидов. Этим способом были получены многочисленные мутации вируса табачной мозаики и у мутантов была исследована первичная структура их капсидного белка. Почти всегда оказывалось, что мутантный вирусный белок отличается от исходного только по одной из 158 аминокислот, а в остальных немногих случаях, когда такие различия касались двух аминокислот, это были аминокислоты, находящиеся в молекуле белка далеко друг от друга. Отсюда следует, что почти при всех вызванных азотистой кислотой мутациях изменение азотистого основания нуклеотида происходило только в одном каком-нибудь триплете и лишь изредка в двух триплетах, но расположенных в разных местах РНК. Это вполне согласуется с предположением о неперекрывающимся коде, но противоречит допущению о том, что код перекрывающийся, так как при перекрывающимся коде изменение основания одного нуклеотида должно было бы приводить к изменению двух или трех обязательно соседних аминокислот в молекуле мутантного белка. Аналогичные результаты получены при исследовании мутаций, затрагивающих первичную структуру других белков, например бактериальной триптофансинтетазы и гемоглобина человека.

Четвертое свойство генетического кода, напрашивающееся из рассмотренной работы Крика и сотрудников по профлавиновым мутациям фага Т4, но не доказанное ими, состоял в том, что некоторые аминокислоты кодируются не одним, а несколькими определенными триплетами нуклеотидов, т. е. что код является вырожденным. Это вытекало из того, что сочетания четырех разных нуклеотидов группами по три дает 64 триплета, аминокислот же только 20. Высказанное впервые Криком и сотрудниками предположение о вырожденности генетического кода было затем доказано другими исследованиями, посвященными выяснению, какими конкретными триплетами кодируются разные аминокислоты.

Такие исследования проводились в основном двумя методами. Первый заключается в том, что в пробирку, содержащую взвесь рибосом, вносят в качестве матрицы не природную мРНК, а искусственно созданные триплеты рибонуклеотидов (кодоны) заданного состава. Такие нуклеотиды, подобно мРНК, прикрепляются к рибосомам. Кроме того, в пробирку вносят какой-нибудь один из видов тРНК с соответствующей присоединенной к нему аминокислотой, меченной радиоактивным углеродом или тритием.

В том случае, если антикодон данной тРНК комплементарен матричному тринуклеодиту, происходит связывание аминокислоты с рибосомами, что можно обнаружить по включению радиоактивной метки в осажденные рибосомы. Если же внесенный в пробирку матричный триплет кодирует не эту, а какую-нибудь другую аминокислоту, то специфического связывания аминокислоты с рибосомами не произойдет. Используя в таких опытах сочетания разных матричных триплетов с тРНК, несущих разные меченные аминокислоты, можно определить, какой конкретный триплет нуклеотидов кодирует ту или иную аминокислоту. Кроме того, этот метод дает подтверждение триплетности кодонов – было показано, что связывание тРНК с рибосомой происходит тогда, когда к рибосоме присоединена тринуклеотидная матрица, но для этого недостаточно динуклеотидной. В то же время тринуклеотидные матрицы оказались достаточными для связывания с рибосомами тРНК со всеми аминокислотами.

Второй метод состоит в том, что в пробирку, содержащую взвесь рибосом и полный набор всех тРНК с присоединенными к ним аминокислотами, вносят в качестве матрицы искусственно синтезированный полирибонуклеотид заданного состава и затем определяют последовательность аминокислот в образующемся полипептиде. Полирибонуклеодит, представляющий цепочку из одинаковых триплетов, обуславливает синтез полипептида, состоящего из повторения одной аминокислоты; например, полирибонуклеотид ААА – ААА – ААА и т. д. кодирует синтез полилизина (лизин – лизин – лизин – и т. д.). Если же в матричном полирибонуклеотиде чередуются два разных триплета, то синтезируется полипептид, в котором чередуются две аминикислоты: например, полирибонуклеотид АЦА – ЦАЦ – АЦА – ЦАЦ кодирует синтез полипептида, состоящего из чередования треонина и гистидина (треонин – гистидин – треонин – гистидин и т. д.). С помощью этих методов и некоторых их модификаций, полностью удалось расшифровать генетический код, показанный в таблице 1.1.

Таблица 1.1

Первый нуклеотид

Второй нуклеотид

Третий нуклеотид

У

Ц

А

Г

У

Фен

Сер

Тир

Цис

У

Фен

Сер

Тир

Цис

Ц

Лей

Сер

Стоп (охра)

Стоп (опал)

А

Лей

Сер

Стоп (амбер)

Трип

Г

Ц

Лей

Про

Гис

Арг

У

Лей

Про

Гис

Арг

Ц

Лей

Про

Глн

Арг

А

Лей

Про

Глн

Арг

Г

А

Илей

Тре

Асн

Сер

У

Илей

Тре

Асн

Сер

Ц

Илей

Тре

Лиз

Арг

А

Мет

Тре

Лиз

Арг

Г

Г

Вал

Ала

Асп

Гли

У

Вал

Ала

Асп

Гли

Ц

Вал

Ала

Глу

Гли

А

Вал

Ала

Глу

Гли

Г


Страница: