Получение рекомбинантного аденовируса CELO
Рефераты >> Биология >> Получение рекомбинантного аденовируса CELO

Необходимость манипулирования генами диктуется конкретными задачами фундаментальных и прикладных исследований. Для понимания молекулярных механизмов функционирования отдельных генов и взаимосвязанных генетических систем большое значение имеет работа с изолированными генами. Такие исследования позволяют определить границы генов, выделить их в чистом виде и идентифицировать элементы структуры, существенные для функционирования. Доказательством функциональной значимости выделенного участка генома может быть только его нормальная экспрессия в модельной генетической системе. Поэтому следующим этапом исследования выделейного гена всегда является перемещение его в такую генетическую систему, где экспрессия гена легко обнаруживается. Результаты экспрессии оценивают либо по появлению белкового продукта, кодируемого исследуемым геном, либо по изменению функций биологической системы вследствие появления в ней новой ферментативной или другой активности, например по компенсации присутствующей в этой системе мутации. Таким образом, в результате исследования структуры конкретного гена и моделирования его экспрессии в искусственной генетической системе можно понять особенности его функционирования в живом организме. Подобный подход может быть успешно применен как к известным генам, которые выделяются целенаправленно, так и к неидентифицированным ранее последовательностям нуклеотидов, функциональную значимость которых определяют лишь после выделения их в чистом виде. Последний подход реализуется в так называемой обратной генетике.

В настоящее время с помощью методов генной инженерии получены данные о структуре и функционировании генов разнообразных организмов, что дало возможность перейти на качественно новый уровень генетических исследований. Это, во-первых, возможность переноса генова в ное для него генетическое окружение с дальнейшей его экспрессией, что ведет к изменению свойств организма, в геном которого вводится ген (например создание продуцентов биологически активных веществ или трансгенных животных), а также осуществление генотерапии наследственных и приобретенных заболеваний путем искусственного замещения мутантных аллелей. Во-вторых, стало реальным конструирование новых генов путем объединения in vitro как известных, так и новых, искусственно синтезированных последовательностей нуклеотидов. Этот подход используется в белковой инженерии для исследования функциональной значимости отдельных аминокислот и доменов в полипептидных цепях ферментов, а также для создания новых белков. В- третьих, в современной биотехнологии появилась возможность применять изолированные гены в составе генно-инженерных конструкций для получения пищевых продуктов и биологически активных веществ белковой природы

1.3.3 Предмет рекомбинантной ДНК-биотехнологии

Практическое использование рекомбинантных ДНК различного происхождения составляет основу рекомбинантной ДНК-биотехнологии, или сокращенно рДНК-биотехнологии.

Сущность рДНК-биотехнологии заключается в том, что нуклеотидная последовательность, которую необходимо выделить или размножить, ковалентно встраивается в самореплицируюшиеся молекулы нуклеиновой кислоты, называемые векторами. Далее такая последовательность нуклеотидов в составе вектора вводится в клетки про- или эукариотического организма, и эти гибридные клетки в селективных условиях, обеспечивающих сохранение вектора внутри клеток, выращивают на питательной среде. В результате образуется клон клеток, теоретически содержащих идентичные векторные молекулы с одной и той же вставкой чужеродной последовательности нуклеотидов. Поскольку объединение молекул клонируемой последовательности нуклеотидов и вектора является не чем иным, как рекомбинацией in vitro, такие гибридные молекулы называют рекомбинантными молекулами. В настоящее время разработаны многочисленные методы, позволяющие выделять определенные последовательности нуклеотидов из сложной смеси фрагментов хромосомной ДНК, а также осуществлять обмен между строго определенными фрагментами генов и другими последовательностями нуклеиновых кислот. Во всех этих реакциях, как правило, используются высокоочищенные препараты нуклеиновых кислот и ферментов нуклеинового обмена /8/.

рДНК-биотехнологию подразделяют на следующие этапы: получение чужеродной ДНК, разрезание полученной ДНК на фрагменты и их очистка,

включение фрагмента чужеродной ДНК в векторную плазмиду и получение рекомбинантной ДНК, или р-ДНК, введение р-ДНК в клетки-реципиенты и клонирование генов, амплификация и экспрессия р-ДНК.

1.3.4 Получение чужеродной ДНК

Чужеродную ДНК можно получить с помощью химического или ферментативного синтеза, либо из любого организма с последующим определением её первичной структуры.

Синтетически получают гены, в случае известной аминокислотной последовательности белка. Так синтезированы гены, кодирующие образование гормонов: про-инсулин человека, интерферон а и а2.

Изоляция структурного гена из генома клетки возможна только при работе с прокариотами, гены которых не содержат интронов. У эукариот ген состоит не только из участков, где записана структура белка (экзонов), но и участков, которые не кодируют белок (интронов) /9/.

Транскрипция у эукариот происходит в ядре, при этом образуется матричная РНК (м-РНК). При её перемещении из ядра через ядерную мембрану в цитоплазму происходит созревание м-РНК - процессинг, в результате чего интроны вырезаются с помощью специальных ферментов, а экзоны сшиваются (сплайсинг). При работе с эукариотами используют синтез структурного гена путем обратной транскрипции, то есть получение ДНК путём копирования м- РНК. Для получения комплементарной ДНК в качестве матрицы используют зрелую м-РНК, не содержащую интронов

1.3.5 Конструирование рекомбинантных ДНК

Основными инструментами для молекулярного конструирования являются два типа ферментов:

а) рестриктирующие эндонуклеазы (рестриктазы), необходимые для получения фрагментов ДНК;

б) лигазы, служащие для сшивания (соединения) участков ДНК.

1.3.5.1 ДНК-рестриктазы и ДНК-метилазы

Это ферменты, впервые открытые как часть системы рестрикции- модификации ДНК у бактерий, специфически гидролизуют молекулы двухцепочечных ДНК при наличии в них определенных последовательностей нуклеотидов, называемых сайтами рестрикции.

По механизму действия и молекулярной структуре различают три типа рестриктаз. Ферменты рестрикции типа I представляют собой сложные мультимерные комплексы, построенные из трех субъединиц с молекулярной массой до 300 кДа, которые обладают рестриктазной, ДНК-метилазной и АТРазной активностями. Рестриктазы типа I для проявления своей активности требуют присутствия АТР, S-аденозилметионина и ионов Mg , они не распознают специфические последовательности нуклеотидов и в силу этого не находят широкого применения в генной инженерии. Рестриктазы типа II узнают специфические последовательности нуклеотидов в точке расщепления ДНК или непосредственной близости от нее, требуют для проявления активности наличия в реакционной смеси АТР и ионов Mg2" и чаще всего используются при молекулярном клонировании. Ферменты типа III объединяют все прочие рестрикционные эндонуклеазы. Они также активны только в присутствии АТР и ионов Mg2 и не проявляют абсолютной зависимости от S-аденозилметионина. Названия рестриктаз складываются из первой буквы родового и двух букв видового названия бактерий, в которых они обнаружены, например Есо - Е. coli. В том случае, когда различные по специфичности действия рестриктазы присутствуют в клетках разных штаммов одного вида бактерий, в название рестриктазы вводят дополнительную букву, например рестриктазы Hinc и Hind выделены из бактериальных клеток Haemophilus influenzae, штаммы с и d. Цифры, следующие за буквенными обозначениями, отражают последовательность открытия соответствующих рестриктаз в клетках бактерий одного вида, например Hael, Haell и НаеШ из Н. aegipticus. Рестриктазы типа II - основной инструмент генной инженерии. Большинство рестриктаз типа II специфически узнают на ДНК тетра- и гексануклеотидные последовательности, а по крайней мере три из них - октануклеотиды. Чем короче олигонуклеотидная последовательность сайта рестрикции, узнаваемого рестриктазой, тем чаще он встречается в случайной последовательности нуклеотидов, в которой каждый из четырех нуклеотидов представлен с одинаковой частотой (50% А-Т-пар и 50% G-C-nap). Так, случайная тетрануклеотидная последовательность встречается в среднем через каждые 256 п.о., а гексануклеотидная - через каждые 4096 п.о. Однако в природных ДНК распределение нуклеотидов может заметно отличаться от случайного. Например, для эукариотических ДНК характерна низкая частота встречаемости динуклеотида CpG и соответственно сайтов рестрикции, содержащих эти динуклеотиды (рестриктазы Hhal, Hpall, TaqI, Thai, Aval, Haell, Hindll, Sail, Smal, Xhol, Xmal). Существенное отклонение частоты встречаемости сайтов рестрикции от ожидаемого при случайном их распределении вдоль ДНК свойственно и хромосомам термофильных бактерий, которым, напротив, свойственно (хотя и не во всех случаях) обогащение по G-C-парам. Для большинства сайтов, узнаваемых рестриктазами типа II, характерно наличие в них симметрии второго порядка, т.е. узнаваемые ими последовательности представляют собой палиндромы, например у рестриктазы EcoRI - 5'-GAATTC- 3'. Это означает, что нуклеотиды, расположенные в каждой из цепей на равном расстоянии от оси симметрии, комплементарны друг другу. Если точки расщепления противоположных цепей ДНК смещены друг относительно друга в сайте рестрикции, то образующиеся в результате рестрикции концы ДНК содержат выступающие одноцепочечные участки. Поскольку такие участки комплементарны сами себе и друг другу и могут между собой взаимодействовать, их часто называют "липкими" концами. В "липких" концах выступающим одноцепочечным участком может быть как 5'-, так и З'-конец Формальным признаком образования 5'- или 3'-выступающих "липких" концов в сайтах рестрикции является расположение точки расщепления цепей ДНК в последовательности, используемой для обозначения сайта рестрикции, слева или справа от оси симметрии соответственно. У некоторых рестриктаз точки расщепления обеих цепей ДНК расположены непосредственно друг под другом в сайте рестрикции. В этом случае после расщепления ДНК "липких" концов не образуется, а получаются так называемые "тупые" концы, в которых нет выступающих одноцепочечных участков ДНК. Имеется одно принципиальное функциональное различие между 5'- и 3'-выступающими "липкими" концами - последние невозможно пометить путем их достройки ДНК-полимеразой. Эту особенность следует иметь в виду при выборе рестриктаз для получения рестрикционных фрагментов ДНК, которые предполагается использовать в качестве зондов.


Страница: