Сравнительная характеристика и морфофизиологические основы мышления животных
Рефераты >> Биология >> Сравнительная характеристика и морфофизиологические основы мышления животных

Вторая группа тестов анализирует способности животных к обобщению и абстрагированию. Данные, полученные в экспериментах по обучению многократным переделкам дифференцировочных УР и «установке на обучение», также выявили градации этих способностей у животных разного уровня организации и показали сходный характер различий между разными таксономическими группами.

Млекопитающие. Грызуны характеризуются низшей градацией элементарного мышления. Способность к экстраполяции обнаружена у диких крыс-пасюков (Крушинский и др., 1975), некоторых генетических групп мышей (Полетаева, 1998; см. 9.2 и рис. 9.1) и бобров (Крушинская и др., 1980), причем в большинстве случаев правильные решения лишь незначительно превышают случайный уровень. Тем не менее эти решения по своему механизму принципиально отличаются от обучения сходной задаче (см. ниже) и представляют собой проявления более сложной, чем обучение, когнитивной способности. Наряду со слабой способностью к экстраполяции, у грызунов крайне ограничена способность к обобщению (см. гл. 5), и они не могут формировать установку на обучение. В то же время некоторые когнитивные задачи им доступны — крысы способны к решению задач на экстренную реорганизацию независимо сформированных навыков (см. 4.8) и к оптимизации стратегии при поиске приманки в тесте Ревеша—Крушинского (см. 4.7).

Следующая градация обнаружена у хищных млекопитающих. Все исследованные виды этого отряда (кошки, собаки, волки, лисы, песцы, медведи) успешно решают задачу на экстраполяцию. Это совпадает с их выраженной способностью к формированию установки на обучение (см. выше) и к достаточно высокому уровню обобщений (см. гл. 5). Вместе с тем важно подчеркнуть, что большинство хищных млекопитающих не способны к решению теста на оперирование размерностью фигур. Это объективно отражает специфику их когнитивных способностей и отличие уровня развития хищных от приматов.

Следующую градацию элементарного мышления можно обнаружить у более высокоорганизованных млекопитающих — обезьян и дельфинов (Флесс и др., 1987). Дельфины хорошо экстраполируют направление движения раздражителя, что согласуется с их способностью к быстрому формированию установки на обучение, к высоким степеням обобщения и другим сложным когнитивным функциям (см. также 5).

Птицы. В пределах класса птиц обнаружены сходные с млекопитающими градации способности к экстраполяции — от полного ее отсутствия у голубей до высокого ее развития (на уровне хищных млекопитающих и дельфинов) у врановых птиц. Хищные птицы (Falco tinunculus, F. vespertilus, Pernis aviporus и др. виды) занимают промежуточное положение: у них уровень успешных решений при первом предъявлении лишь незначительно (хотя и достоверно) превышает случайный.

Эта характеристика становится более полной и убедительной в сопоставлении с данными по другим видам элементарного мышления у врановых и голубей.

Врановые птицы достигают уровня развития приматов по следующим видам когнитивных тестов:

по скорости и стратегии образования установки на обучение;

по способности к оперированию эмпирической размерностью фигур

(см. 4.6.2);

по возможности образования довербальных понятий (см. 5);

по способности к употреблению символов (см. гл. 5 и 6).

В отличие от них голуби — значительно более примитивно организованные представители класса птиц. Они не способны к решению элементарных логических задач, к формированию установки на обучение и обладают крайне ограниченной способностью к допонятийному уровню обобщения. Тем не менее даже у них проявляется способность к решению наиболее простой задачи—к экстренной интеграции независимо образованных навыков (см. 4.1).

Способность к экстраполяции представляет собой относительно универсальную когнитивную функцию, в той или иной степени доступную широкому диапазону видов позвоночных, начиная с рептилий. Таким образом, самые первые и примитивные биологические предпосылки мышления человека возникли на ранних этапах филогенеза позвоночных.

Более высокоорганизованные животные способны к решению большего числа когнитивных тестов и справляются с более сложными логическими задачами. Это соответствует представлениям Л. В. Крушинского о том, что эволюция элементарной рассудочной деятельности животных шла, по-видимому, в направлении увеличения числа «законов», которыми животное способно оперировать.

3. Рассудочная деятельность и сложность строения мозга.

Л.В. Крушинский и его сотрудники в 70-е годы XX века предприняли исследование морфофизиологических основ элементарной рассудочной деятельности животных. Эти работы включали сопоставление сложности строения высших ассоциативных структур переднего мозга птиц и млекопитающих с уровнем развития у них способности к рассудочной деятельности. На основе таких сопоставлений была изучена роль отдельных образований мозга в способности к экстраполяции и в способности к обучению. Ряд работ был специально посвящен сравнению способности животных к решению элементарных логических задач и к обучению.

3.1. «Цефализация», сложность нейронного строения и уровень рассудочной деятельности.

В лаборатории Л. В. Крушинского изучалась связь сложности организации мозга и общего уровня эволюционного развития в классах птиц и млекопитающих. Нейроморфологические данные, накопленные к 70-м годам XX в., свидетельствовали, что индекс цефализа-ции — относительный объем высших отделов мозга (новой коры у млекопитающих и гипер- и неостриатума у птиц) растет по мере повышения уровня эволюционного развития вида. Л. В. Крушинский (1986) показал, что как у птиц, так и у млекопитающих степень цефализации в пределах каждого класса позвоночных представляет собой существенный параметр, определяющий уровень развития рассудочной деятельности.

А. Портман (Portmann, I946) получил следующие величины индексов относительного объема полушарий птиц: голубь — 4,0; курица — 3,27; утка (Anas platirhinchos) — 6,08; сокол (Falco tinninculus) — 8,24; канюк (Buteo buteo) — 9,78; сорока (Pica pica) — 15,81; грач (Corvus frugilegus) — 15,68; ворона (ы) — 15,3

У млекопитающих также обнаруживается зависимость между уровнем развития элементарной рассудочной деятельности и относительным размером мозга. Л. В. Крушинский приводит следующие величины квадратического показателя головного мозга (по Я. Я. Рогинскому) для ряда видов млекопитающих: мышь — 0,0088; крыса — 0,0123; кролик — 0,0705; кошка — 0,195; собака — 0,464. Приматы и дельфины обладают наиболее дифференцированным и крупным мозгом среди млекопитающих.

В ряду млекопитающих происходит увеличение площади ассоциативных зон коры больших полушарий, в частности префронтальной (лобной) области. Это тоже является индикатором усложнения строения высших отделов мозга. Такая же закономерность описана и в отношении ассоциативных областей мозга птиц.

В этой связи следует отметить и еще одно немаловажное обстоятельство. Сравнительные исследования Л. В. Крушинского и его сотрудников (1986) показали, что нет прямой и непременной связи между степенью развития элементарной рассудочной деятельности и наличием новой коры. Мозг птиц построен по иному плану, чем мозг млекопитающих. В процессе филогенеза особого развития у них достигли новые, отсутствующие у млекопитающих, отделы стриатума (гипер- и неостриатум— wulst), в то время как у млекопитающих сформировалась новая кора. Именно за счет этих отделов стриатума увеличился объем полушарий и переднего мозга врановых птиц


Страница: