Высокомоментные двигатели
Рефераты >> Технология >> Высокомоментные двигатели

2.3 Выбор элементов ШИПа

В качестве операционных усилителей DA6 и DA7 возьмем микросхему К157УД2. Операционный усилитель DA7 возьмем типа К140УД7.

Гальваническая развязка в силовой части осуществляется с помощью оптоэлектрических интегральных микросхем типа К262КП1Б (оптронный повторитель). Транзисторы в силовой цепи VT13¸VT16 выбираем типа КТ503В с данными:

Iк max и=350mA,

h21э=40…120,

Uкэ max=40В,

n-p-n – типа.

Выбираем диоды типа Д7А а данными:

Imax=300mA,

Uобр max=50В.

Все нерегулируемые резисторы типа МЛТ, регулируемые резисторы типа СПО-2.Конденсаторы типа К10У-5.

2.4 Выбор приборов и устройств измерения и контроля

В лабораторном стенде для снятия необходимых характеристик требуется наличие приборов измерения и контроля:

– амперметр на два предела измерения (1,5 и 15 ампер);

– вольтметр с пределом измерения 30 вольт;

– индикатор скорости на 3000 оборотов в минуту.

2.4.1 Для изготовления амперметра двух пределов измерения, берем за основу измерительную головку микроамперметра. Включая добавочные сопротивления, как это показано на рисунке 2.4.1, получаем необходимое измерительное устройство.

Рисунок 2.4.1

Расчет добавочных сопротивлений производится по формуле

(2.4.1)

где RД – величина добавочного сопротивления;

В – требуемый предел измерения;

Д – число делений микроамперметра;

RВН – внутреннее сопротивление прибора.

Рассчет предела на 15 ампер

Данное сопротивление изготовлено из манганиновой проволоки.

Рассчет предела на 1,5 ампера

Это сопротивление изготовлено из хромалевой проволоки.

Для обеспечения точности показаний, в схему включены подстроечные переменные резисторы, как это показано на рисунке 2.4.1 .

2.4.2 Вольтметр и измеритель скорости были изготовлены на базе измерительной головки микроамперметра, аналогично тому, что применен для изготовления амперметра.

Включая добавочные сопротивления, как это показано на рисунке 2.4.2, получили необходимые измерительные устройства.

Рисунок 2.4.2

Расчет добавочных сопротивлений производится по формуле 2.4.1

Эти сопротивления набраны из резисторов типа ОМЛТ, укаанных в приложении 1.

Для обеспечения точности показаний, в схему включены подстроечные переменные резисторы, как это показано на рисунке 2.4.2 .

2.4.3 Величина момента, развиваемого двигателем, фиксируется с помощью проградуированной шкалы и стрелки.

3 РАЗРАБОТКА И ИЗГОТОВЛЕНИЕ ПЕЧАТНОЙ ПЛАТЫ ШИРОТНО-ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ

Под изготовлением печатной платы подразумевается ряд действий, посредством которых, при наличии электрической принципиальной схемы необходимого устройства (или его части), выбранных элементах схемы и известных источниках питания, получаем печатную плату этого устройства (или его части), работающая в соответствии с расчетными параметрами. Изготовление печатной платы было произведено в соответствии со следующим планом.

1. Разработка схем электрических принципиальных.

2. Трассировка плат (прокладка электропроводящих дорожек, соединяющих навесные элементы платы).

Для трассировки был использован автоматический трассировщик печатных плат PCAD 8.51. Разработанную схему набираем в редакторе схем программы PCAD 8.51 с указанием заранее рассчитанных типов и номиналов навесных элементов и подводимого питания. Результатом работы автотрассировщика являются чертежи лицевых и обратных сторон двухсторонних печатных плат с произведенной разводкой дорожек.

3. Подготовка подложки плат.

В соответствии с размерами будущих печатных плат (выясняется по чертежам, полученным автотрассировщиком), изготовляются заготовки из текстолита фольгированного двухстороннего. Эти заготовки тщательно обрабатываются мелкой наждачной бумагой. При этом преследуются две цели. Во-первых, необходимо снять окислы с медной фольги, покрывающей стеклотекстолит и во-вторых это делается для того, чтобы нанести микроцарапины на поверхность этой фольги. Зачем это нужно, будет понятно из дальнейшего описания.

4. Следующим шагом является изготовление штампов, по которым будут изготовлены платы.

Данная технология подразумевает использование одноразовых бумажных штампов. Они изготавливаются следующим образом. Готовые чертежи плат с произведенной разводкой печатаются лазерным принтером на плотной глянцевой бумаге, имеющей некоторую прозрачность (для возможности совмещения лицевых и обратных сторон). При этом необходимо учесть, что лицевые стороны должны быть распечатаны в зеркальном отображении. Распечатка должна производиться именно на лазерном принтере. У такого типа принтеров используется тонер, который имеет свойства размягчаться при высокой температуре. При падении температуры он спекается и в таком состоянии может долго сопротивляться агрессивным средам. Эти его свойства используются в данной технологии изготовления печатных плат. Затем распечатки тщательно совмещают на просвет и скрепляют с двух-трех сторон.

5. Подготовка заготовки для травления.

Помещаем в скрепленные штампы стеклотекстолитовую заготовку платы, протертую медицинским спиртом, и проводим термическую обработку полученного пакета. Это делается для того, чтобы тонер на штампах размягчился и перешел на поверхность медной фольги, покрывающей стеклотекстолит. Такую обработку удобно производить утюгом, положив пакет на гладкую поверхность. При этом бумага плотно склеивается с фольгой спекшимся тонером. Этот пакет кладут в воду на 20-30 минут. По прошествии этого времени бумага размякает и свободно отстает от фольги, оставив на ней четкий рисунок дорожек, контактных площадок и надписей будущих плат.

6. Травление.

Травление это удаление лишней фольги с заготовки химическим способом. При этом используется реакция замещения

FeCl3+Cu®CuСl3+Fe

Продукты химической реакции осадком выпадают на дно ванны, в которой производится травление и в результате мы имеем плату, на которой медная фольга осталась только на тех участках, где она покрыта тонером лазерного принтера. Этот тонер смывается растворителем и мы получаем готовую печатную плату.


Страница: