Методика обучения решению текстовых задач алгебраическим способом
Рефераты >> Педагогика >> Методика обучения решению текстовых задач алгебраическим способом

Как видим, при таком решении нам не понадобилось составлять систему уравнений. Однако, несомненно, это решение сложнее приведенного выше, хотя бы потому, что не всякий догадается найти разность скоростей лодки по течению и против течения реки. Часто также эту разность принимают не за удвоенную часть расстояния АВ, проплываемую плотом за 1 ч, а за скорость плота, что, конечно, приводит к ошибочному результату.

Как мы уже знаем, решение задачи состоит из последовательности шагов (действий). Поэтому отыскание этой последовательности шагов есть самое главное, что нужно сделать для того, чтобы решить задачу.

Вот этим и занимается математика, установлением для многих видов задач правил, пользуясь которыми можно найти указанную последовательность шагов для решения любой задачи.

Приведем некоторые такие правила.

1. Словесное правило. Примером такого правила может служить правило нахождения степени произведения, которое изучается в 6 классе: степень произведения равна произведению степеней сомножителей.

Это правило позволяет составить такую последовательность шагов: 1) установить все сомножители произведения; 2) найти данную степень каждого из этих сомножителей; 3) результаты второго шага перемножить.

2. Правило-формула. Примером такого правила служит формула корней квадратного уравнения. В курсе алгебры 7 класса эта формула дается в таком виде: корни уравнения , если и , где , можно вычислить по формуле .

В этом правиле легко указать последовательность шагов на основе указанного правила-формулы: 1)проверим условие: ; 3) находим: ; 3) проверяем условие ; если эти условия выполнены, то вычисляем корни по формуле .

3. Правило-тождество. Примером такого правила может служить тождество квадрата двучлена, которое изучается в 6 классе: .

Словесная формулировка этого тождество такова: квадрат двучлена равен сумме квадрата первого члена на удвоенное произведение первого и второго членов и квадрата второго члена.

В соответствии с этим тождеством можно составить такую последовательность шагов: 1) найти первый член двучлена; 2) найти второй член двучлена; 3) возвести первый член в квадрат; 4) возвести второй член двучлена в квадрат; 5) составить произведение первого и второго членов двучлена; 6) результат пятого шага удвоить; 7) результаты 3, 4, и 6-го шагов сложить.

4. Правило-теорема. Многие теоремы могут служить правилами для решения задач соответствующего вида. Например, теорема: средняя линия трапеции параллельна ее основаниям, и длина ее равна полусумме длин оснований, изучается в курсе геометрии в 7классе. Последовательность шагов очень простая: 1) устанавливаем длину основания трапеции; 2) находим их полусумму. Это и будет длина средней линии.

5. Правило-определение. Иногда основой для правила решений задач некоторого вида может служить определение соответствующего понятия. Например определение решения систем неравенств с одной переменной. Это определение дано в учебнике алгебры 7 класса в таком виде: решением систем неравенств с одной переменной называется значение переменной, при котором верно каждое из неравенств системы.

Последовательность шагов к данному правилу будет такова: 1) решить каждое из неравенств системы, получим для каждого неравенства числовой промежуток – его решение; 2) найти пересечение полученных числовых промежутков. Найденное пересечение и будет решением системы неравенств.

Математические задачи, для решения которых в школьном курсе математики имеются готовые правила или эти правила непосредственно следуют из каких-либо определений или теорем, определяющих программу решения этих задач в виде последовательности шагов, назовем стандартными. При этом предполагается, что для выполнения отдельных шагов решения стандартных задач в курсе математики также имеются вполне определенные правила.

Что такое стандартная задача понятно, но если есть стандартная, значит, есть и нестандартная. Нестандартные задачи – это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения.

Задача.

Расстояние от реки до турбазы туристы рассчитывали пройти за 6 ч. Однако после 2 ч пути они уменьшили скорость на 0,5 км/ч и в результате опоздали на турбазу на 30 минут. С какой скоростью шли туристы первоначально?

Решение. Эта задача является текстовой. Для подобных задач никакого общего правила, определяющего точную программу их решения, не существует. Однако общие указания для решения таких задач есть.

Обозначим искомую первоначальную скорость туристов через км/ч. Тогда за 6 ч, за которые они рассчитывали пройти расстояние от реки до турбазы, они прошли км. Фактически этот путь они прошли следующим образом: 2 ч они шли с первоначальной скоростью, а затем еще 4,5 ч (т.к. они опоздали на 0,5 ч к сроку) – с уменьшением скорости км/ч. Следовательно, они прошли км и км, а всего км, что равно расстоянию от реки до турбазы, т.е. км. Получаем уравнение: .

Решив это уравнение, найдем: Значит, первоначальная скорость туристов равна 4,5 км/ч.

Итак, процесс решения нестандартной задачи состоит в последовательном применение двух основных операций:

1) сведение нестандартной задачи к другой ей эквивалентной, но уже стандартной задаче;

2) разбиение нестандартной задачи на несколько стандартных подзадач.

В зависимости от характера нестандартной задачи мы используем либо одну из этих операций, либо обе. При решении более сложных задач эти операции приходиться использовать многократно.

Существуют различные методы решения текстовых задач [6]: арифметический, алгебраический, геометрический, логический, практический и др. В основе каждого метода лежат различные виды математических моделей. Например при алгебраическом методе решения задачи составляются уравнения или неравенства, при геометрическом – строятся диаграммы ил графики. Решение задачи логическим методом начинается с составления алгоритма. Различные методы решения конкретной задачи будем называть способами решения.


Страница: