Динамика твердого тела
Рефераты >> Физика >> Динамика твердого тела

или

$ J{\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = M_{\parallel} , $

(3.9)

поскольку в случае твердого тела $J = {\displaystyle \rm const}.$

Уравнение (3.9) и есть основное уравнение динамики вращательного движения твердого тела вокруг неподвижной оси. Его векторная. форма имеет вид:

$ J{\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf M}_{\parallel} $

(3.10)

Вектор $\omega$всегда направлен вдоль оси вращения, а ${\displaystyle \bf M}_{\parallel}$- это составляющая вектора момента силы вдоль оси.

В случае $M_{\parallel}=0$получаем $\omega = {\displaystyle \rm const},$соответственно и момент импульса относительно оси $L_{\parallel}$сохраняется. При этом сам вектор L, определенный относительно какой-либо точки на оси вращения, может меняться. Пример такого движения показан на рис. 3.5.

Рис. 3.5.

Стержень АВ, шарнирно закрепленный в точке А, вращается по инерции вокруг вертикальной оси таким образом, что угол $\alpha$между осью и стержнем остается постоянным. Вектор момента импульса L, относительно точки А движется по конический поверхности с углом полураствора $\beta = {\displaystyle \frac{\displaystyle {\displaystyle \pi }}{\displaystyle {\displaystyle 2}}} - \alpha$однако проекция L на вертикальную ось остается постоянной, поскольку момент силы тяжести относительно этой оси равен нулю.

Кинетическая энергия вращающегося тела и работа внешних сил (ось вращения неподвижна).

Скорость i -й частицы тела

$ v_{i} = \omega \rho _{i} , $

(3.11)

где $\rho _{i}$- расстояние частицы до оси вращение Кинетическая энергия

$ T = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }v_{i}^{2} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }\rho _{i}^{2} \omega ^{2} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}J\omega ^{2}, $

(3.12)

так как угловая скорость вращения для всех точек одинакова.

В соответствии с законом изменения механической энергии системы элементарная работа всех внешних сил равна приращению кинетической энергии тела:

$ \delta A = d\left( {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}J\omega ^{2}} \right) = J\omega \cdot d\omega = M_{\parallel} \omega \cdot dt = M_{{\displaystyle \left\| {\displaystyle } \right.}} \cdot d\varphi $

(3.13)

Работа внешних сил при повороте тела на конечный угол $\varphi _{0}$равна

$ A = {\displaystyle \int\limits_{0}^{\varphi _{0} } {\displaystyle M_{\parallel} } } \cdot d\varphi . $

(3.14)

опустим, что диск точила вращается по инерции с угловое скоростью $\omega _{0} ,$и мы останавливаем его, прижимая какой-либо предмет к краю диска с постоянным усилием. При этом на диск будет действовать постоянная по величине сила $F_{тр} ,$направленная перпендикулярно его оси. Работа этой силы

$ A_{тр} = - F_{тр} \cdot R\varphi , $

где $R$- радиус диска, $\varphi$- угол его поворота. Число оборотов, которое сделает диск до полной остановки,

$ n = {\displaystyle \frac{\displaystyle {\displaystyle \varphi }}{\displaystyle {\displaystyle 2\pi }}} = {\displaystyle \frac{\displaystyle {\displaystyle J\omega _{0}^{2} }}{\displaystyle {\displaystyle 4\pi \cdot F_{тр} \cdot R}}}, $

где $J$- момент инерции диска точила вместе с якорем электромотора.

Замечание. Если силы таковы, что $M_{\parallel} = 0,$то работу они не производят.

Свободные оси. Устойчивость свободного вращения.

При вращении тела вокруг неподвижной оси эта ось удерживается в неизменном положении подшипниками. При вращении несбалансированных частей механизмов оси (валы) испытывают определенную динамическую нагрузку, Возникают вибрации, тряска, и механизмы могут разрушиться.


Страница: