Методы численного моделирования МДП-структур
Рефераты >> Математика >> Методы численного моделирования МДП-структур

¶Fkl

¶jh

+åh=k-m,k+m [ jhl + nhl + phl] (3.32)

¶Gkl

¶jh

¶Gkl

¶nh

¶Gkl

¶ph

åh=k-1,k,k+1[ jhl+1+ nhl+1+ phl+1]+

¶Gkl

¶nh

¶Gkl

¶ph

¶Gkl

¶jh

+åh=k-m,k+m [ jhl+1+ nhl+1 + phl+1]=-Gkl+

¶Gkl

¶ph

¶Gkl

¶nh

¶Gkl

¶jh

+åh=k-1,k,k+1[ jhl+ nhl + phl]+

¶Gkl

¶ph

¶Gkl

¶nh

¶Gkl

¶jh

+åh=k-m,k+m [ jhl + nhl + phl]

с соответствующими краевыми условиями.Таким образом , на каждом шаге метода Ньютона необходимо решить линеаризованную систему линейных уравнений (3.32) .После того,как эта система решена ,пологаем l=l+1 и переходим к определению следующего приближения .Достоинством данного алгоритма является высокая (квадратичная ) скорость сходимость .Следует отметить ,что реализация метода Ньютона требует значительно больших затрат оперативной памяти по сравнению с методами 1-3.

3.2.3.1 Итерационные методы решения линеаризованных уравнений

На каждом шаге итерационного процесса в методах линеаризации 1-3 необходимо решить три системы эллиптических разностных уравнений большой размерности. Прямые методы их решения громоздки и требуют больших вычислительных затрат. Поэтому, как правило, используют итерационные методы. Методам решения эллиптических разностных уравнений посвящена обширная литература [4][5]. Рассмотрим наиболее широко применяющиеся методы решения этих уравнений.

Матрицы систем разностных уравнений (3.25), (3.28) и (3.29) (линеаризованное уравнение Пуассона) имеют сильное диаганальное преобладание, и их числа обусловленности (отношение максимального собственного значения матрицы к минимальному) невелики.

Поскольку числа обусловленности невелики, то нахождение решения указанных систем разностных уравнений не вызывает затруднений.Обычно используется метод поточечной верхней релаксации.

Определение решений разностных аналогов уравнений неразрывности для электронов и дырок является значительно более трудной задачей. Коэффициенты этих уравнений зависят от потенциала электрического поля ,который сильно меняется по структуре прибора. Данное обстоятельство приводит к плохой обусловленности (большим числам обусловленности) разностных уравнений. В связи с этим использование методов простой итерации и Зейделя [4][5], скорость сходимости которых обратно пропорциональна числу обусловленности, для решения разностных аналогов уравнений неразрывности требует очень больших вычислительных затрат.

Значительно более высокую скорость сходимости имеют метод верхней релаксации [3], метод переменных направлений и итерационный метод Чебышева [4]. Однако эффективность этих методов в случае плохо обусловленных систем разностных уравнений существенно зависит от выбора специальных итерационных параметров. Оптимальные значения указанных параметров определяются по некоторой априорной информации об исходной матрице разностных уравнений (обычно требуются довольно точные оценки максимального и минимального собственных значений матрицы). Коэффициенты уравнений неразрывности, а значит, и собственные значения матрицы сильно меняются в ходе внешнего итереционного процесса и особенно значительно при изменении краевых условий (приложенных напряжений ). Поэтому вычисление оптимальных значений итерационных параметров длч вышеназванных методов является очень сложной задачей и они редко применяются для решения уравнений неразрывности.


Страница: