Шпаргалки по физике
Рефераты >> Физика >> Шпаргалки по физике

Интерференция света – это явление наложения волн с образованием устойчивой картины максимумов и минимумов. При интерференции света на экране наблюдается чередование светлых и темных полос, если свет монохроматический (излучаются электромагнитные волны одной длины), или цветных полос, если цвет белый или состоит из волн разной длинны. Необходимым условием наблюдения интерференционной картины является когерентность волн. Два различных источника света не могут быть когерентны. Свет излучается возбужденными атомами, время излучения атома длится ~10-8с, период колебаний, возбуждаемых световой волной ~10-15с. Невозможно согласовать излучение двух атомов одного источника, тем более, невозможно согласовать излучение двух разных источников. Каждый атом излучает короткий цуг волн, который можно представить как сумму монохроматических волн с начальной фазой, определяемой моментом излучения. Поэтому интерферировать могут лишь волны, испускаемые в одном и том же акте излучения. Для получения интерференционной картины видимого света необходимо разделить излучения от одного источника на два потока, эти потоки направить по двум разным траекториям, а затем соединить их в некоторой области пространства. В этом случае в данной точке пространства будут сходиться волны, испущенные одним атомом в одном акте излучения, и разность фаз колебаний, возбуждаемых в этой точке этими волнами, будет определятся только разностью хода волн. Например, луч, падающий непосредственно на экран SA, и луч, отразившийся от зеркала, ОА, будут когерентны. Разность геометрических волн в данном случае является разностью хода волн D=(SO+OA)-SA. Очевидно, что разность хода волн не должна превышать 3 м. Если D>3 м, то в точке A встречаются волны, излученные разными атомами, так как за время 10-8с одним атомом излучается цуг волн длиной l=ct=3 м, где с – скорость света, равная 300000 км/с. Дифракция света. Явление огибания волнами препятствий и попадания света в область геометрической тени называется дифракцией. Пусть плоская волна падает на щель в плоском экране АВ. Согласно принципа Гюйгенса-Френеля, каждая точка волнового фронта является источником вторичных волн, причем все эти различные источники когерентны. Огибающая к фронтам волн от вторичных источников дает положение нового фронта волны. Явление дифракции наблюдается при условии соизмеримости препятствий с длинной волны l~d. Все вторичные источники когерентны и распределение интенсивности есть результат интерференции волн, излучаемых вторичными источниками. Дифракционная решетка состоит из чередующихся прозрачных и непрозрачных полос. Суммарная ширина прозрачной и непрозрачной полосы называется периодом дифракционной решетки d. Пусть на решетку падает плоская волна. Так как l~d, то лучи начинают откланяться от первоначального направления распространения. Щели являются когерентными источниками. Фотоэффект. Фотоэлектрическим эффектом называется испускание электронов с поверхности металла под действием света. Если к электродам откачанной трубки приложить напряжение, ток по цепи не потечет, так как пространстве между катодом и анодом нет носителей тока. Но при облучении катода световым потоком в цепи появится ток. При увеличении напряжения сила тока растет, все большее число электронов, покинувших катод под действием света, достигает анода. Начиная с некоторого значения напряжения U1 сила тока в цепи не изменяется. Это означает, что все электроны, вышедшие из катода за 1 с, достигают анода. Этот ток Iн называется фототоком насыщения. Он позволяет определить количество электронов, покидающих катод за 1 с. При U, равном нулю, фототок отличен от нуля. Это объясняется тем, что электроны вылетают из металлической пластинки с некоторой скоростью и не нужно создавать электрического поля для того, чтобы они достигали анода. Для того, чтобы фототок был равен нулю, надо создать поле, препятствующие движению электронов к аноду. Разность потенциалов, при которой электроны не достигают анода, называется задерживающим напряжением Uз. Изменение кинематической энергии должно быть равно работе электростатических сил поля, созданного между электродами: qeUз=mv2/2, где qe и Uз < 0.

Законы Столетова для фотоэффекта. 1. Сила фототока насыщения тем больше, чем больше падающий на катод световой поток (средняя по времени энергия, падающая на поверхность катода за единицу времени). С увеличением падающего потока возрастает количество электронов, покидающих катод. 2. Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности. Фотоэффект наблюдается, если длина волны падающего излучения меньше некоторой определенной длины волны, называемой красной границей фотоэффекта, т.е. при l<lкр. Длина волны, соответствующая красной границе фотоэффекта, зависит от свойств металла. Последний закон невозможно объяснить с позиций классической физики. Была выдвинута гипотеза, что свет излучается и поглощается порциями – квантами или фотонами. Энергия фотона e=hn, где h-постоянная Планка, равная 6,63*10-34Дж*с. Фотон – элементарная частица, движущаяся в вакууме со скоростью с, равной скорости света. Масса покоя фотона равна нулю. Импульс фотона p=mc=hn/c. Согласно Эйнштейну, энергия фотона, падающего на металл, идет на работу выхода электрона из металла и на сообщение электрону кинетической энергии. Уравнение Эйнштейна имеет вид hn=Aвых+mv2/2 или hn =Авых+qU3, где Aвых – работа выхода электрона из металла. Работой выхода Aвых называется минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Свободные электроны, выходя за пределы кристаллической решетки металла, образуют вокруг него электронное облако. Между ним и кристаллической решеткой создается электрическое поле, препятствующее дальнейшему выходу электронов из металла. Для того, чтобы электрон покинул металл, он должен обладать достаточной энергией для преодоления этого поля. Скорости электронов в системе различны. Электрону с меньшей энергией надо сообщить большую порцию энергии, чем электрону с меньшей энергией, для того чтобы они покинули металл. Работа выхода Aвых зависит только то химического состава металла и от состояния его поверхности. Из определения работы выхода ясно, что в формуле hn=Aвых+mv2/2 mv2/2представляет собой максимальную кинетическую энергию выбитого электрона. Из этой формулы очевидно также, что фотоэффект наблюдается, если n<nкр, где nкр= Aвых/h. Соответственно lкр=с/nкр=сh/Aвых.

Шкала электромагнитных волн. Электромагнитные волны генерируются в широком диапазоне частот. Каждый участок спектра имеет свое названия. Так, видимому свету соответствует довольно узкий диапазон часто и соответственно длин волн: от 4*10-7 до 7,5*107. С коротковолновой стороны от видимой области спектра находиться ультрафиолетовая область, с длинноволновой - инфракрасная. За ультрафиолетовым диапазоном идет рентгеновский, а затем g-излучение. g-лучи – электромагнитное излучение самой большой частоты n³1020 Гц (l~10-12м). Радиоволны лежат в диапазоне l>10-2м.


Страница: