Туннельный эффект, туннельный диод
Рефераты >> Физика >> Туннельный эффект, туннельный диод

В обычных полупроводниках атомы примеси, произвольно расположенные в исходном материале, достаточно удалены друг от друга, так что между собой не взаимодействуют. На энергетической диаграмме это отображается расположением отдельных, не расщепленных в зону энергетических уровней электронов примесных атомов. Вследствие локализованности этих уровней электроны, находящиеся на них, не могут пере­мещаться по кристаллу и участвовать таким образом, в элек­тропроводности.

По мере увеличения концентрации примесей расстояния между их атомами уменьшаются, что увеличивает взаимодей­ствие между ними. Это приводит к расщеплению примесных уровней в примесную зону, которая может слиться с основной зоной (зонной проводимости для примесной зоны доноров или с валентной зоной для примесной зоны акцепторов). Такое слияние зон происходит при концентрациях примеси, превышающих, некоторое критическое значение. Так, для германия значение этой концентрации составляет около 2·1019 см−3, а для кремния — 6·1019 см−3. Такие сильнолегированные полупроводники относятся к типу вырожденных, отличительной чертой которых является то, что уровень Ферми находится внутри либо зоны проводимости, либо валентной зоны.

Для определения положения уровня Ферми в вырожден­ном полупроводнике можно воспользоваться тем же графическим методом по определению положения этого уровня, который был применен к обычным (невырожденным) полупровод­никам. Соответствующие построения для электронного и дырочного полупроводников приведены на рис. 4. Как видно из графиков, уровень Ферми расположен внутри зоны проводи­мости для электронного полупроводника и внутри валентной зоны для дырочного, что характерно для вырожденных полу­проводников.

Энергетическая диаграмма p-n-перехода, образованного вырожденным электронным и дырочным полупроводниками, показана на рис. 4. Так как уровни Ферми в обеих частях полупроводника в состоянии термодинамического равновесия должны сравняться, то выполнение этого условия приводит к перекрытию зон. Дно зоны проводимости электронной области получается ниже потолка валентной зоны дырочного полу­проводника и, как видно из рис. 4, величина контактной разно­сти потенциалов φk при контакте двух вырожденных полупро­водников будет близка к ширине запрещенной зоны Eg=(Ec — Еv) исходного материала [так как (EF — Еc) и (EV — ЕF)<<Eg то Eg ≈ e· φk]. Ширина p-n-перехода обратно пропор­циональна концентрации примесей, и при концентрациях, со­ответствующих вырождению (1019—1020 см−3), ширина пе­рехода получается порядка 100 А°.

Перекрытие зон и чрезвычайно малая ширина перехода и приводят к появлению аномалии в вольтамперной характерис­тике p-n-перехода. Но прежде чем рассматривать эту анома­лию, необходимо кратко ознакомиться с известным квантовомеханическим явлением — туннельным эффектом, лежащим в ос­нове аномалии.

Туннельный диод.

Как было упомянуто ранее, свое название туннельный ди­од получил из-за лежащего в его основе работы известного в квантовой механике туннельного эффекта. Еще до открытия Эсаки этот эффект в полупроводниках был достаточно изучен, первоначально Зенером, затем Мак−Аффи, Шокли и другими, которые рассмотрели туннелирование электронов через запрещенную зону в сплошном полупроводнике. Дальнейшее развитие теория туннельного эффекта в полупроводниках по­лучила в фундаментальных работах Л. В. Келдыша.

Основа этого явления заключается в том, что частица (например, электрон 2 на рис.5), имея энергию Eэл, которая меньше высоты потенциального барьера Eб обладает конеч­ной вероятностью проникновения сквозь этот барьер. Потен­циальный барьер Eб (например, связанный с работой выхо­да электрона из металла) по законам классической физики не составляет препятствия для электрона 1, обладающего боль­шей энергией, чем высота этого барьера. При определенных условиях и электрон 2 может преодолеть его, хотя энергия электрона меньше высоты потенциального барьера. Причем этот электрон не огибает барьера, а как бы «туннелирует» сквозь него (отсюда и название эффекта), имея одну и ту же энергию до и после перехода.

Такой механизм преодоления потенциального барьера мож­но связать с волновым представлением движения электрона в твердом теле, когда при столкновении с барьером электрон подобно волне проникает на какую-то глубину внутрь его. В случае барьера конечной тол­щины имеется какая-то конеч­ная вероятность найти волну (электрон) с другой стороны барьера, что эквивалентно про­хождению электроном барьера. Чем меньше ширина барьера, тем больше «прозрачность» его для волны; т. е. тем больше ве­роятность прохождения электрона сквозь этот потенциальный барьер. При определенных условиях туннельный эффект может

наблюдаться в p-n-переходе. Чтобы найти условия, при кото­рых возможен туннельный эффект, необходимо выяснить влия­ние параметров перехода на вероятность туннельного эффекта.

Ширина сплавного p-n-перехода связана с концентрацией примесей в полупроводнике следующим образом:

где ε — диэлектрическая проницаемость материала;

e — заряд электрона.

При обычном легировании полупроводниковых материалов (концентрация примесей донорных или акцепторных порядка 1016 см−3) обедненный слой получается довольно широким (около 10−4 см). При такой ширине перехода вероятность туннелирования электронов через него пренебрежимо мала.

Вероятность Wэл туннельного прохождения электрона че­рез p-n-переход для треугольного потенциального барьера определяется следующим выражением

где Eg − ширина запрещенной зоны (здесь принято Eg ≈ e·φkчто справедливо для вырожденных полупроводников).

Для определения плотности туннельного тока необходимо найти вероятное количество электронов, проходящих через потенциальный барьер в 1 сек. Оно будет равно произведению вероятности туннелирования электрона Wэл на число столкновений электрона с барьером за 1 сек, равному a·Eg/ћ·δ (а— постоянная решетки кристалла), т. е.

С ростом степени легирования материала ширина p-n-перехода уменьшается и вероятность туннелирования возрастает. При концентрации примесей 1019—1020 см−3, соответствую­щих вырождению, ширина перехода получается порядка 100 А° и вероятное количество туннельных переходов электрона за 1 сек будет уже порядка 1012 (для германия). При этом напряженность электрического поля в p-n-переходе около 106 в/см и переброс электронов за счет эффекта Зенера еще не сказывается.


Страница: