Системы нейтрализации отработавших газов в выпускной системе ДВС
Рефераты >> Экология >> Системы нейтрализации отработавших газов в выпускной системе ДВС

Таблица 2 – Европейские и американские нормы токсичности от­работавших газов

За долгое время существования проблемы автомобильных выбросов и загрязнения ими атмосферного воздуха было разработано множество ме­тодов и способов, позволяющих уменьшить количества выхлопов или снизить их токсичность. В настоящее время разрабатываются и претво­ряются в жизнь ме­ро­приятия по снижению за­грязнения атмосферы вы­бросами автомобильных двигателей, включающие в себя:

1.усовершенствование конструкций двигателей и повышение качеств изго­товления;

2.поиск новых видов топлива, применение раз­личных присадок к нему;

3.создание энергоси­ловых установок для ав­томобилей, выбрасывающих меньшее количество вред­ных веществ;

4.разработка устройств, снижающих содержание вредных компонен­тов в отработавших газах.

Практика показала, что при этом достичь уровня токсичности от­работавших газов, требуемого законодательством развитых стран, первыми тремя способами нельзя. Поэтому получила широкое распро­странение нейтрализация отработавших газов в системе выпуска. В этом случае токсичные пары, вышедшие из цилиндров двигателя, ней­трализуются до выброса их в атмосферу.

1. Способы нейтрализации отработавших газов в выпускной сис­теме

Существует несколько способов нейтрализации отработавших газов в выпускной системе автомобиля:

1.Окисление отработавших газов путем подачи к ним дополнитель­ного воздуха в термических реакторах. Термические реакторы уста­навливают на многих японских и американских двигателях. Термиче­ский реактор представляет собой теплоизолированный объем со специ­альной организацией течения отходящих газов, устанавливаемый в вы­пускной системе двигателя и осуществляющий термическое доокисление токсичных компонентов за счет собственного тепла отходящих газов. Термическая нейтрализация не зависит от вида сжигаемого топлива, наличия присадок и позволяет использовать в двигателях этилирован­ный бензин. Повысить температуру отработавших газов в реакторе можно, уменьшив теплопотери применением проставок-экранов, тепло­изоляцией корпуса реактора, использованием тепла реакции окисле­ния, а также кратковременным уменьшением угла опережения зажига­ния. Реакторы особенно эффективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН и не восстанавливают NOx, поэтому приме­няются как дополнительные устройства перед каталитическим нейтра­лизатором.

2.Поглощение токсичных компонентов жидкостью в жидкостных ней­трализаторах. Этот способ не получил широкого распространения из-за малой эффективности и необходимости частой замены жидкости.

3.Применение каталитических нейтрализаторов и сажевых фильтров (на автомобилях с дизельными двигателями) – в настоящее время наи­более актуальный.

2. Нейтрализации отработавших газов в выпускной сис­теме бензиновых двигателей

Эволюция каталитических нейтрализаторов

В конце 60-х годов, когда мегаполисы Америки и Японии стали буквально задыхаться от смога, инициативу взяли на себя правитель­ственные комиссии. Именно законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей вынудили про­мышленников усовершенствовать двигатели и разрабатывать системы нейтрализации.

В 1970 году в Соединенных Штатах был принят закон, в соответ­ствии с которым уровень токсичных выхлопов автомобилей 1975 мо­дельного года должен был быть в среднем наполовину меньше, чем у машин 1960 года выпуска: СН — на 87%, СО — на 82% и NOх — на 24%.

Аналогичные требования были узаконены в Японии и в Европе. Первым делом инженеры бросились совершенствовать системы питания и зажигания. Но было очевидно, что добиться столь существенного улучшения ситуации с токсичностью без применения дополнительных устройств просто невозможно.

В 1975 году на американских машинах появились первые каталити­ческие нейтрализаторы отработавших газов — тогда еще двухкомпонент­ные, так называемого окислительного типа. Двухкомпонентными они на­зывались потому, что могли нейтрализовать только два токсичных ком­понента — СО и СН. Окислительными — потому, что происходившие реак­ции представляли из себя окисление (то есть фактически дожигание) молекул СО и СН с образованием углекислого газа СО2 и воды Н2О.

На американских автомобилях 1975 года появились транзисторные системы зажигания с высокой энергией искры и свечи с медным сердеч­ником центрального электрода — это свело к минимуму пропуски зажи­гания и последующие вспышки несгоревшего топлива в нейтрализаторе, которые грозят оплавлением керамики.

В 1977-м к нему добавили "противоазотную" секцию, а еще через пару лет объединили все в едином корпусе, дав неправильное название "трехступенчатый" нейтрализатор. На самом деле речь идет не о сту­пенях, а о трех подавляемых классах вредных веществ.

К 1990 году нейтрализатор переехал вплотную к выпускному кол­лектору, чтобы быстрее нагреваться до рабочих температур (300ºС) – тем самым уменьшить вредные выбросы на стадии прогрева.

В 1995 году фирма ”Эмитек” разработала технологию подогрева ка­тализатора мощным электрическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эмикэт”) была установлена на ”БМВ-Альпина В12”.

Ну и, наконец, в 2000 году появилась цеолитовая ловушка углево­дородов (СН), задерживающая их при пуске мотора и лишь после на­грева до 220°С отдающая на "съедение" готовому к работе катализа­тору.

Устройство и принцип действия каталитических нейтрализаторов

Современные каталитические нейтрализаторы – это трехкомпонент­ные каталитические нейтрализаторы.

Трехкомпонентный каталитический нейтрализатор представляет со­бой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализа­тора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение.

Підпис: Рисунок 1 – Керамические соты

Химикам известно множество катализаторов - медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, ко­торые образуются при сгорании содержащейся в бензине серы, оказалась благородная платина. На долю катализаторов приходится до 60% себестои­мости устройства. Именно благодаря им происхо­дят необходимые химические реакции – окисление монооксида углерода (СО) и несгоревших углево­дородов (СН), а также сокращение количества окиси азота (NOx). В трехкомпонентном нейтрализаторе платина и палладий вызывают окис­ление СО и СН, а родий ”борется” с NOx. Кстати, родий – субпродукт при получении платины – наиболее ценный в этой троице.


Страница: