Исследование условий возникновения колебательного режима в процессе окислительного карбонилирования фенилацетилена
Рефераты >> Химия >> Исследование условий возникновения колебательного режима в процессе окислительного карбонилирования фенилацетилена

Влияние физических и химических факторов на систему Белоусова-Жаботинского также занимает важное место в современных исследованиях.

В 1974 году профессором химии и биологии Аризонского университета (США) Артуром Т. Уинфри [13] были открыты пространственно-временные структуры в неперемешиваемой системе Белоусова-Жаботинского, возникающие и существующие в виде различных двух- и трехмерных пространственных рисунков (например, концентрических колец, спиралей, волновых фронтов и т.п.). С тех пор интерес к системам без перемешивания постоянно растет и в последнее время в большой мере не остается только академическим, но и указывает на перспективность исследований в данном направлении. Большинство широко исследованных колебательных химических реакций – реакции Белоусова – Жаботинского. В этих реакциях органические субстраты окисляются броматными ионами в серной кислоте в присутствии метал-ионов катализатора. В 1987 году в лаборатории физической химии в Университете Юнтедо (Япония) были найдены органические субстраты, производящие двойную частоту колебаний реакции Белоусова – Жаботинского [20]. В опытах с использованием одного из четырех органических субстратов, среди них метиловый эфир ацетоуксусной кислоты и этиловый эфир 4-хлорацетоуксусной кислоты, наблюдали эффект колебаний двойной частоты.

Еще одним новым направлением научных исследований является изучение особенностей самой реакции Белоусова- Жаботинского или сходных с ней (Бриггса-Раушера, Брея-Либавски и т.п.).Например,ранее реакцию Белоусова проводили в закрытом реакционном сосуде, поэтому из-за расходования реагентов (бромата и малоновой кислоты) колебания затухали. Затем в проточном реакторе непрерывного перемешивания получили незатухающие колебания [21], что позволило изучать тонкие стороны механизма автоколебаний, в частности зависимость периода и амплитуды колебаний от интенсивности ультрафиолетового излучения. В таком реакторе был зарегистрирован и режим прерывистой генерации. Рис.2.3.3 Автоколебания концентрации церия и принудительная смена стадий I и II, вызываемая добавкой Br-, Ag+ и Ce4+.

В системе имеется некоторая концентрация Ce4+. На стадии II образуется Br-, который после взаимодействия с активными частицами реакции окисления Ce3+ исчезает из системы. При достаточно большой концентрации Br- окисление полностью заторможено. Когда концентрация Ce4+ уменьшается и достигает минимального значения, резко падает концентрация Br-. Окисление Ce3+ (I стадия) начинается с большой скоростью, и концентрация Ce4+ возрастает; когда она достигает максимального значения, увеличивается концентрация Br-, что тормозит окисление Ce3+. После этого цикл повторяется. Одновременно измеряя концентрацию йода спектрофотометрически и потенциал йодсеребряного электрода (концентрацию I-), получается классическая картина разрывного предельного цикла в периодической реакции Брея, когда в системе концентрация I2 служит медленной переменной, а концентрация I- - быстрой. Используя спектрофотометрическую запись (Ce4+) одновременно с записью потенциала бромсеребряного электрода (Br-), можно увидеть достаточно сложные фазовые портреты.

В Ивановском Институте растворов РАН в 2001 г. были проведены экспериментальные исследования динамических свойств плазмы в условиях инициирования гетерогенных химических реакций. Было доказано, что химически реагирующая плазма при пониженном давлении проявляет колебательный динамический режим, который влияет на линейный выход продуктов. Можно полагать, что многие известные в настоящее время “гладкопротекающие” сложные реакции могут проходить при определенных концентрационных и температурных условиях в колебательном режиме. В табл.2.3.3. приведены некоторые из найденных гомогенных колебательных окислительно-восстановительных процессов.

Таблица 2.3.3.

Гомогенные окислительно – восстановительные каталитические колебательные процессы [22].

Номер процесса

Наименование

Окислитель

Восстановитель

Катализатор

1

Броматные осцилляторы

HBrO2

Карбоновые кислоты, кетоны, фенолы,NaH2PO2,KMnO4  

Ce(III,IV);

Mn(II,III); Cu(II,III)L1; Ni(II,III)L1; Fe(II,III)L2,L3;Co(II,III)L2,L3;

Ru(II,III)L2,L3; Os(I,II)L3; Ag(I,II)L3; Cr(I,II)L3 *

2

Броматные осцилляторы

HBrO3

Фенолы, альдегиды

CuIIL1, NiIIL1

3

Иодатные осцилляторы

HIO2 ,H2O2,

CH2(COOH)2, S2O32-

Mn(II)

4

Хлоритные осцилляторы

HClO2

I-; S2O32-

CH2(COOH)2

5

Кислородные осцилляторы

O2

Бензойная кислота

Co(III,IV)

*- L1 - тетраазамакроциклический лиганд; L2 – бипиридил; L3 – фенантролин.

Также были осуществлены колебательные реакции с участием малоновой кислоты в кислой среде в системе: иодат калия - сульфат марганца - перекись водорода – крахмал.

2.3.4. Окислительное карбонилирование алкинов в растворах комплексов палладия

В 1985 году [23] в МИТХТ О. Н. Темкиным и Г. М. Шуляковским при исследовании реакции карбалкоксилирования ацетилена в системе PdBr2 - PPh3 - HBr - н-бутанол - диметилсульфоксид были обнаружены периодические изменения скорости поглощения газовой смеси (CO и C2H2) и цвета каталитического раствора от желто - оранжевого до зелено - бурого. Колебания в условиях опыта длятся 9 часов с периодом около 30 минут; амплитуда колебаний скорости поглощения газа 0,4 моль./л*час.; амплитуда колебаний значений платинового электрода 300 мВ. Выходу системы на колебательный режим предшествует индукционный период, продолжительность которого зависит от состава катализатора и условий проведения процесса. Характер изменения скорости поглощения газа в индукционный период различный, а потенциал платинового электрода (EРt) понижается от 630 - 500 мВ до 560 - 200 мВ в зависимости от условий опыта. По истечении индукционного периода происходит резкое увеличение скорости поглощения смеси CO и C2H2, уменьшение Eрt от 560 - 250 мВ до (+50) - (-50) мВ и изменение цвета раствора. Устойчивые колебания начинаются после определенной раскачки системы, которая выражается в форме нарастающих или затухающих по величине амплитуды и частоте колебаний. При удельной скорости подачи исходного и Vуд = 1,1мин-1 (состав газ CO/C2H2 = 1) продолжительность раскачки составляет от 6 до 12 периодов, а частота колебаний уменьшается от 30 - 20 до 6 - 1,5 кол/час. Устойчивые колебания сохраняются в течение опыта. Амплитуда колебаний потенциала платинового электрода на участке устойчивых колебаний от 330 до 212 мВ.


Страница: