Масс-спектрометрический метод анализа
Рефераты >> Химия >> Масс-спектрометрический метод анализа

Анализаторы масс

Когда устройства ионизации смогли испарять и ионизировать биомолекулы, стало необходимо улучшить анализаторы масс до соответствующей скорости, точности и разрешения (рис. 2.1). Точнее, квадрупольные, квадрупольная ионная ловушка, времяпролётные (TOF), времяпролётные рефлекторные и циклотронные резонанса ионов анализаторы масс претерпели множественные модификации/улучшения за последние десять лет, чтобы соответствовать уровню MALDI и ESI. Сложнейшей проблемой оказалось совмещение устройств ионизации при атмосферном давлении (760 Торр) и анализаторов, в которых поддерживается 10-6 – 10-11 Торр, то есть, разница в давлении на 9 и более порядков. [10]

Анализ масс

Аналитические приборы обычно различаются в своих способностях в зависимости от индивидуального устройства и предназначения. Это верно и для масс-спектрометров. Хотя все масс-спектрометры содержат анализаторы масс, не все анализаторы работают одинаковым образом: некоторые разделяют ионы в пространстве, другие разделяют их по времени. В общих словах, масс-анализатор различает ионы в газовой фазе по их отношению массы к заряду (m/z), причём заряд может быть обусловлен присоединением или потерей протона(ов), катиона(ов), аниона(ов) или электрона(ов). Появление заряда заставляет молекулу подвергаться действию электрических полей, тем самым позволяя измерить её массу. Важно помнить, что анализаторы масс измеряют отношение m/z, а не массу. Часто это является камнем преткновения, так как ион оказывается многократно заряженным и m/z становится значительно меньше действительной массы (рис. 1.8 и 1.9). Например, дважды заряженный пептид массой 976.5 Да C37H68N16O142+ имеет m/z 488.3.

Многократная зарядка особенно характерна для ионизации электроспрея, давая многочисленные пики, относящиеся к одному образцу, но наблюдаемые при разных m/z.

Первые анализаторы масс, сделанные ещё в ранние 1900-е, использовали магнитное поле для разделения ионов по радиусу кривой, описываемой ими при прохождении через поле. Устройство современных анализаторов значительно изменилось в последние пять лет, сейчас обеспечивая намного большую точность, увеличенную чувствительность, более широкий диапазон масс и способность давать структурную информацию. Так как способы ионизации эволюционировали, анализаторы масс были вынуждены улучшиться на порядки, чтобы удовлетворить требованиям анализа большого разнообразия биомолекулярных ионов с точностью до одной миллионной и субфемтомольной чувствительностью. [11]

Таблица 2.1. Краткий обзор принципов работы анализаторов.

Анализатор масс

Принцип работы

Квадрупольный

Сканирование по частотам электромагнитного излучения

Квадрупольная ионная ловушка

Сканирование по частотам электромагнитного излучения

Времяпролётный (TOF)

Время пролёт прямо связано с m/z иона

Времяпролётный рефлектрон

Время пролёт прямо связано с m/z иона

Квадрупольный-TOF

Сканирование по частотам электромагнитного излучения и определение времени полёта

Магнитный сектор

Магнитное поле влияет на радиус траектории иона

Фурье-резонансный ионный циклотронный MS

Переводит движение иона в циклотроне в m/z (FTMS)

Рабочие характеристики анализаторов

Масс анализатор обычно оценивается по следующим характеристикам: точность, разрешение, диапазон масс, способность к тандемному анализу, скорость сканирования.

Точность

Точность – способность анализатора давать точную информацию о m/z. Точность в большой степени зависит от устойчивости прибора и от разрешения. Например, прибор с точностью 0.01% даёт информацию о 1000 Да пептиде с точностью ±0.1 Да, а для 10000 Да белка - ±1.0 Да. Точность серьёзно меняется от анализатора к анализатору в зависимости от типа анализатора и разрешения. Альтернативным способом описания точности является использование терминологии «части на миллион» (ppm), в которой 1000 Да пептид с точностью ±0.1 Да может быть также описан как 1000.00 Да пептид ±100 ppm.

Разрешение (разрешающая сила)

Разрешение – способность масс-спектрометра различать ионы с различными отношениями массы к заряду. Поэтому большее разрешение связано с прямым увеличением способности различать ионы. Стандартным определением разрешения является следующее уравнение:

Разрешение = M/ΔM (2.1)

где M соответствует m/z, а ΔM является шириной на половине максимума (FWHM или «полушириной»).

Пример измерения разрешения показан на рис. 2.2, где пик имеет m/z 500 и полуширину 1. Получается разрешение M/ΔM = 500/1 = 500.

Разрешающая сила анализатора, в некоторой степени, определяет точность конкретного прибора, как показано на рис. 2.2. Средняя масса молекулы высчитывается с использованием эффективной массы всех изотопов каждого составляющего молекулу элемента. Моноизотопная масса рассчитывается с использованием массы изотопа элемента, имеющего наибольшую распространённость, для каждого из составляющих элементов. Если прибор не разрешает изотопы, он будет давать широкий пик, центр которого соответствует средней массе. Более высокое разрешение может даже разделить индивидуальные изотопы или же сузить пики, позволяя более точно определить их положение.

Диапазон масс

Это диапазон m/z анализатора масс. Например, квадрупольные анализаторы обычно определяют m/z до 3000. Анализатор магнитного сектора обычно определяет m/z до 10000, а времяпролётные анализаторы имеют практически неограниченный диапазон масс.

Тандемный анализ масс (MS/MS или MSn)

Это способность анализатора разделять различные молекулярные ионы, генерировать фрагментарные ионы от выбранного и измерять массы фрагментированных ионов. Фрагментированные ионы обычно используются для определения структуры исходных молекулярных ионов.


Страница: