Механизмы переноса субстанций
Рефераты >> Химия >> Механизмы переноса субстанций

В среднемассовой системе отсчета zi=mi (мольная масса компонента), а в среднеобъемной zi=Vi (парциальный мольный объем компонента Vi м3/кмоль).

Используя последнее уравнение, можно выразить через Di, μi, ci i=1,n и представить потоки в виде

На практике удобнее использовать коэффициенты диффузии, связывающие потоки не с градиентами химических потенциалов, а с градиентами концентрации. Выражая химические потенциалы через мольные концентрации и используя соотношение

позволяющее сократить на единицу число независимых переменных, можно записать

Таким образом, макроскопический поток каждого компонента в системе отсчета z зависит от градиентов концентраций всех компонентов, а коэффициенты пропорциональности носят название матрицы коэффициентов многокомпонентной диффузии и определяются как свойствами компонентов среды, так и выбором системы отсчета. Экспериментальное нахождение коэффициентов диффузии осуществляется, как правило, в замкнутом приборе. В этих условиях суммарный поток объема равен нулю, т.е. лабораторная система отсчета совпадает со среднеобъемной. Поэтому экспериментальные данные по коэффициентам диффузии обычно приводятся для среднеобъемной системы отсчета. В частном случае двухкомпонентной системы матрица вырождается в единственный коэффициент бинарной (взаимной) диффузии

Это соотношение называется первым законом Фика.

2.1.3 Турбулентный механизм

Турбулентный перенос массы можно рассматривать по аналогии с молекулярным как следствие хаотического перемещения вихрей. Вводится коэффициент турбулентной диффузии DT, зависящий как от свойств среды, так и от неоднородности скорости и удаленности от межфазной поверхности. При турбулентном движении, суммарный поток вещества относительно лабораторной системы, отсчета может быть записан

Поскольку объемы среды, участвующие в турбулентных пульсациях, значительно превышают молекулярные размеры, интенсивность турбулентного переноса массы может быть существенно выше молекулярного. Отношение коэффициентов турбулентной и молекулярной диффузии в пристенной области достигает DT/Di ~ 102 - 105.

2.2 Перенос энергии

Энергию системы можно подразделить на микроскопическую и макроскопическую. Микроскопическая, являющаяся мерой внутренней энергии самих молекул, их теплового движения и взаимодействия, называется внутренней энергией системы (U). Макроскопическая складывается из кинетической энергии (Ек), обусловленной конвективным движением среды, и потенциальной энергии системы в поле внешних сил (Еп). Таким образом, полную энергию системы, приходящуюся на единицу массы, можно представить как

Е' = U' + Е'п + Е'к , Дж/кг

Штрихами отмечены величины, отнесенные к единице массы.

Энергия может передаваться в форме теплоты или работы. Теплота - форма передачи энергии на микроскопическом уровне, работа - форма передачи энергии на макроскопическом уровне. Рассмотрим выражения для потока энергии за счет различных механизмов переноса.

2.2.1 Конвективный механизм

Поток энергии, переносимый конвективным механизмом в лабораторной системе отсчета, имеет вид

Это количество энергии, переносимое движущимся макроскопическим "объемом за единицу времени через единицу поверхности.

2.2.2 Молекулярный механизм

Молекулярным механизмом осуществляется перенос энергии на микроскопическом уровне, т.е. в форме тепла. Поток тепла за счет молекулярного механизма в условиях механического и концентрационного равновесия может быть представлен в виде

где λ - коэффициент молекулярной теплопроводности, Вт/м К. Это уравнение носит название закона Фурье.

В разреженных одноатомных газах допустимо пренебречь потенциальной энергией взаимодействия молекул и считать внутреннюю энергию равной средней кинетической энергии поступательного движения молекул pU'=3NkT/2V. В этом случае поток тепла будет определяться потоком кинетической энергии молекул:

В плотных газах и конденсированных средах при определении внутренней энергии необходимо учесть энергию потенциального взаимодействия. В этом случае поток тепла будет определяться поступательным переносом кинетической и потенциальной энергии молекул, а также и столкновительным переносом. Таким образом, коэффициент молекулярной теплопроводности складывается из трех составляющих:

Этим объясняется тот факт, что в отличие от коэффициента молекулярной диффузии, уменьшающегося с увеличением плотности системы, коэффициент молекулярной теплопроводности возрастает с увеличением плотности, несмотря на затруднения в подвижности молекул. Величина коэффициента молекулярной теплопроводности составляет для газов λ ~ 10-2 Вт/(м К), для жидкостей λ ~ 10-1 Вт/(м К), для металлов λ~ 102 Вт/(м К).

2.2.3 Турбулентный механизм

Турбулентный перенос энергии можно рассмотреть по аналогии с молекулярным, вводя коэффициент турбулентной теплопроводности λТ:

Как и коэффициент турбулентной диффузии, λТ будет определяться свойствами системы и режимом движения. Суммарный поток энергии в лабораторной системе отсчета может быть записан как

2.3 Перенос импульса

Врассмотренных выше явлениях переноса массы и энергии переносимые субстанции являлись скалярными величинами, поток скалярной величины есть вектор. В случае переноса векторной величины, каковой является импульс, ее поток будет обладать большей размерностью, а именно, представлять собой тензор второго ранга, для задания которого требуется уже 9 чисел (скаляр задается одним, вектор - тремя).

2.3.1 Конвективный перенос

В простейшем случае, когда среда движется с некоторой конвективной скоростью относительно лабораторной системы отсчета в направлении оси X. При этом импульс, или количество движения единичного объема, будет равен . Тогда количество движения , переносимого за счет конвективного механизма в направлении оси X за единицу времени через единицу поверхности, будет равно


Страница: