Окись этилена
Рефераты >> Химия >> Окись этилена

Образующаяся хлорноватистая кислота присоединяется к этилену, давая этнленхлоргидрин:

При пропускании этилена в хлорную воду всегда протекают одновременно две реакции: образование этиленхлоргидрина в ре­зультате взаимодействия с этиленом хлорноватистой кислоты и образование дихлорэтана при взаимодействии с эти­леном растворенного (молекулярного) хлора:

Относительное количество образующегося дихлорэтана будет возрастать по мере увеличения концентрации этиленхлоргидрина в воде, так как одновременно повышается концентрация хлористого водорода, а следовательно, увеличивается количество недиссоциированного хлора, реагирующего с этиле­ном с образованием дихлорэтана.

Выделение высококонцентрированного этиленхлоргидрина из разбавленных растворов связано с большими трудностями. Несмотря на значительную разницу температур кипения этиленхлоргидрина (129°С) и воды разделить их обычной ректификацией не­возможно, так как они образуют азеотропную смесь, содержащую 41% этиленхлоргидрина и кипящую при 98°С. Поэтому путем ректификации в лучшем случае удается отделить 41%-ный водный раствор этиленхлоргидрина. На практике во второй стадии процесса при получении окиси этилена непосредственно используют разбавленные растворы этиленхлоргидрина.

Окись этилена образуется при взаимодействии этиленхлоргидрина со щелочью:

Выход окиси этилена может значительно понизиться вслед­ствие протекания побочной реакции – омыления этиленхлоргид­рина разбавленной щелочью в этиленгликоль:

Чем ниже концентрация реагирующих компонентов, тем больше образуется этиленгликоля и тем ниже выход окиси этилена. Более благоприятные условия создаются, если в колонну, в которой проводится обработка этиленхлоргид­рина щелочью, снизу вводить пар и подогревать 4 – 6%-ный рас­твор этиленхлоргидрина до температуры кипения азеотропной смеси этиленхлоргидрина и воды. При этом содержание этиленхлоргидрина в парах повышается до 41% и во взаимодействие со щелочью, орошающей колонну, вступает не разбавленный, а концентрированный этиленхлоргидрин. Концентрация применяемой щелочи также должна быть достаточно высокой (40%-ный рас­твор едкого натра или 30%-ное известковое молоко). Таким об­разом, реакция протекает фактически между концентрированными этиленхлоргидрином и щелочью, и образование этиленгликоля сво­дится к минимуму.

Рис. 2.1. Схема производства окиси этилена непрерывным методом через этиленхлоргидрин.

На рис. 2.1 приведена технологическая схема производства окиси этилена через этиленхлоргидрин непрерывным методом . В стальной реакционной колонне 3, футерованной кислотоупор­ными плитками, производится гипохлорирование этилена с обра­зованием этиленхлоргидрина. Колонна снабжена двумя боковыми соединяющимися отводами (верхним и нижним). Газообразный хлор подается через диффузор в нижний отвод и распыляется в по­ступающей сверху воде, а этилен вводится снизу в основную часть реакционной колонны. Благодаря такому устройству аппарата реакционная жидкость интенсивно циркулирует и перемешивается; условия гидролиза хлора и взаимодействия хлорноватистой кис­лоты с этиленом улучшаются, а, следовательно, уменьшается воз­можность образования дихлорэтана.

Для повышения выхода этиленхлоргидрина в колонну 3 вводят большой избыток этилена против стехиометрически требуемого количества. Отходящий из ко­лонны избыточный этилен после очистки возвращают в производственный цикл. Кроме этилена в отходящем из колонны газе содержатся пары дихлорэтана и хлористый водород, нейтрализуемый в насадочном скруббере 1 холодным раствором щелочи. При этом одновременно конденсируется большая часть паров дихлорэтана, который вместе с отработанной щелочью выводят из скруббера в разделитель 2. После расслаивания жидкостей дихлорэтан направляют на очистку, а отработанную щелочь сливают. Чтобы в циркулирующем газе не накапливались инертные примеси, часть газа непрерывно отбирают, очищают от остатка паров дихлорэтана в угольном адсорбере и далее используют как топливо.

Образующийся в колонне раствор этиленхлоргидрина (4 – 6%-ный) поступает в реакцион­ную колонну 4, где при 100°С об­рабатывается щелочью (30%-ное известковое молоко). Реакцион­ную массу подогревают паром, вводимым в нижнюю часть колонны. Получаемая в результа­те омыления этиленхлоргидрина окись этилена вместе с парами побочных продуктов (дихлорэтан, ацетальдегид) через дефлегма­тор 5 поступает в конденсатор 7, охлаждаемый водой или рассо­лом. Конденсат разделяют в рек­тификационной тарельчатой ко­лонне 9. Дистиллятом этой колонны является окись этилена, направляемая после ожижения в конденсаторе 8 на дальнейшее использование.

Кроме колонных аппаратов (рис. 2.1), для омыления этиленхлоргидрина успешно применяют омылители спирального типа. В омылителях подобного типа достигается более полное омыление этиленхлоргидрина.

При получении окиси этилена хлоргидринным методом общая степень превращения этилена достигает 95%; выход этиленхлоргидрина составляет около 80% от теоретического (считая на этилен). На 1 тонну окиси этилена получается около 200 кг дихлорэтана.

Существенными недостатками процесса получения окиси этилена через этиленхлоргидрин являются большой расход хлора и извести, а также значительные капитальные затраты.

Более экономичен процесс прямого каталитического окисления этилена в окись этилена. При этом методе расходуется только этилен и воздух, не требуется затрат хлора и извести, не образуется побочный продукт - дихлорэтан и меньше капитальные затраты. Поэтому метод прямого окисления приобретает все большее распростра­нение.

2.2. Каталитическое окисление этилена

Для проведения реакции прямого окисления этилена было предложено большое число высокоактивных катализаторов. Почти все они содержат в качестве основного компонента серебро . Применяемые катализаторы можно разделить на две основные группы:

· сплошные серебряные катализаторы;

· активное серебро на носителе (трегерные катализаторы).

Катализаторы первой группы представляют собой металлическое серебро, которое обычно гранулируют и гранулы обрабатывают кислотами, что увеличивает поверхность катализатора и повышает его активность. Если катализатор предназначается для проведения процесса окисления этилена в псевдоожиженном слое, металлическое серебро измельчают до порошкообразного состоя­ния и формуют в виде таблеток или шариков.

Предложены также сплавные скелетные катализаторы; серебро сплавляют с кальцием, который извлекается затем уксусной кислотой. Недостатком сплошных скелетных катализаторов является их высокая стоимость из-за большого расхода серебра.


Страница: