Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии
Рефераты >> Химия >> Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии

Точность контрольных измерений признают удовлетворительной при выполнении условия:

где С и CD - результаты контрольных измерений содержания ионов в пробе и в пробе с добавкой; XD – значение добавки, мг/дм3

KD – норматив оперативного контроля погрешности, рассчитываемый по следующим формулам: при проведении внутрилабораторного контроля (Р=0,90): KD = 0,84 ÖDx2 + DxD2; при проведении внешнего контроля (Р = 0,95): KD = ÖDx2 + DxD2, где Dx и DxD –значения абсолютной погрешности результатов анализа пробы и пробы с добавкой, соответственно.

При превышении норматива оперативного контроля погрешности проводят повторное определение ионов в пробе. При повторном превышении указанного норматива К выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Метрологические характеристики приведены в виде зависимости от значения X – среднего арифметического результата параллельных определений. [1, 38 – 41]

2.3 Оборудование, применяемое в работе

Количественное определение ионов цинка, кадмия, свинца и меди методом ИВА проводили с помощью импульсного потенциостата ПИ-50-1 (стационарные I - j кривые регистрировались x - y потенциометрическим двухкоординатным самописцем ЛКД 4-003) и электрохимического комплекса AUTOLAB PGSTAT 30 (Голландия). В качестве индикаторного электрода использовались полупогруженные игольчатые стеклоуглеродные электроды. Электродом сравнения служил хлорсеребряный электрод. Анодом и одновременно контейнером для раствора служил стеклоуглеродный тигель. Потенциал электролиза j = -1,6 В, время накопления – 300 секунд, процесс электрорастворения элементов с поверхности индикаторного электрода и регистрация аналитических сигналов на вольтамперограмме проводился при линейно меняющемся потенциале от –1,2 до 0,05 В относительно хлорсеребряного электрода при заданной чувствительности прибора. Для удаления кислорода проводили облучение раствора УФ в течение 15-20 минут. Потенциалы максимумов регистрируемых анодных пиков Zn, Cd, Pb и Cu соответственно равны: -0,9В; -0,6В; -0,4В; -0,05В.

Пробы для анализа были взяты из различных источников (табл. 2.6)

Таблица 2.6

№ пробы

Вид

Местоположение забора пробы

1

Сточные воды

район «5 микрорайон»

2

район «Вольный Аул»

3

район «Искож»

1

Водопроводная вода

район КБГУ

2

район «Горный»

3

район «Искож»

Глава III. Экспериментальная часть

Измерения проводили по трехэлектродной схеме: рабочий электрод – стеклоуглеродный стержень (Æ 0,7 мм), вспомогательный электрод – стеклоуглеродный тигель (V = 25 см3) и электрод сравнения – хлорсеребряный электрод в насыщенном растворе KCl (х.с.э.).

В работе используют растворы:

фоновый раствор – 0,1М NaCl c pH 3;

исходные растворы металлов:

1) Cu, Cd и Zn по 10-1 г/л;

2) 10-1 г/л Pb при рН 3.

Электрохимическое накопление определяемых металлов на катоде проводили за счет электровосстановления при потенциале -1,1В (относ. х.с.э.). Съемку анодных вольтамперных кривых проводили в интервале потенциалов -1,1 - +0,1 В при скорости развертки потенциала 2 – 5 мВ/с.

Перед проведением измерений в течение 15 мин, а также при проведении накопления металла через раствор пропускали инертный газ (очищенный и осушенный аргон) или облучали УФ-излучением для удаления из раствора растворенного кислорода. Во время съемки вольтамперограмм инертный газ пропускали над раствором.

3.1 Порядок работы

В ячейку заливали 30 мл фонового раствора с неизвестной концентрацией катионов Cu, Cd, Zn и Pb. Пропускали через раствор в течение 15 мин инертный газ (или облучали УФ-светом), проводили накопление металлов в течение установленного времени и снимали анодную вольтамперную кривую.

Рассчитывали, какие добавки растворов определяемых металлов с концентрацией 10-1 г/л нужно внести в ячейку для изменения концентрации рабочего раствора на определенную величину. Вводили рассчитанные добавки, 10 мин пропускают через раствор инертный газ и снимали еще 3 вольтамперограммы при том же времени накопления.

Для каждого пика определяли средние значения высоты пика, полученные в исходном растворе и в растворе после введения добавки. Концентрации катионов в исходном растворе находили с помощью соотношения

Ip1/Ip2 = cx /(cx+c),

где

Ip1 - высота пика в исходном растворе;

Ip2 - высота пика после введения в раствор добавки;

cx - концентрация катиона данного металла в исходном растворе;

c - изменение концентрации соответствующего катиона в растворе в результате введения добавки.

Вводили в ячейку вторично такие же добавки катионов металлов, пропускали инертный газ и проводили аналогичные измерения. С помощью соотношения Ip1/Ip3 = cx/(cx+2c) (где Ip3 - высота пика после введения в раствор второй добавки) также определяют исходную концентрацию в растворе ионов исследуемых металлов.

Рассчитывали средние значения концентрации ионов Cu, Cd, Pb и Zn в исходном растворе, полученные в результате расчетов после введения первой и второй добавок.

Схему процесса можно представить таким образом.

3.2 Электрохимические параметры выполнения измерений на СУ-электроде

Таблица 3.1

Параметры выполнения измерений

Наименование

параметра

Единицы

измерения

Величина

параметра

Потенциал очистки электрода

мВ

-200

Продолжительность очистки

с

60

Потенциал накопления

мВ

800

Продолжительность накопления*

с

180

Мешалка

 

вкл.

Продолжительность успокоения раствора

с

10

Скорость развертки потенциала

мВ/c

150

Начало развертки потенциала

мВ

800

Конец развертки потенциала

мВ

-200

Шкала измерения катодного тока

мкА

20мкА/2 мкА

Электродная схема ячейки

трехэлектродная

Вид полярографии

постояннотоковая


Страница: