Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии
Рефераты >> Химия >> Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии

Можно предположить, что значение и применение электрохимических инверсионных методов будет расширяться, особенно в связи с нарастающей важностью проблемы контроля загрязнений окружающей среды. Дальнейшее развитие этих методов зависит от фундаментальных исследований, которые концентрируются в нескольких основных направлениях.

Для более широкого применения инверсионных методов в текущих (серийных) и контрольных анализах необходима их автоматизация.

Электрохимические инверсионные методы в принципе невозможно использовать для непрерывных определений из-за необходимости осуществления последовательных стадий накопления и растворения, но они пригодны для выполнения автоматических серийных анализов в течение определенных временных интервалов, если имеется подходящая программирующая аппаратура. Хорошими примерами являются приборы с программным управлением, в которых используется ртутный стационарный капельный электрод [17] и вращающийся ртутный пленочный электрод [18].

Применение твердых электродов, особенно графитовых (в форме вращающихся дисковых электродов) или угольных пастовых, весьма перспективно. Эти электроды дают правильные и воспроизводимые результаты. Дальнейшее изучение пленочных ртутных электродов (это относится, прежде всего, к вращающимся дисковым электродам с тонким слоем ртути, осажденной in situ на графитовой подложке) позволит лучше использовать преимущества как ртутных, так и твердых электродов.

Интересны также различные методы измерения, которые до настоящего времени применялись лишь изредка, например потенциостатические и гальваностатические нестационарные методы, а в определенных случаях и полярография с переменной составляющей напряжения. Дальнейшее расширение возможностей электрохимических инверсионных методов может быть достигнуто путем сочетания с современными методами разделения, основанными на применении различных комплексообразующих реагентов, а также разными другими способами. Темпы развития этих методов зависят от состояния всех направлений электрохимии, теоретические данные которой могут быть полезны для разработки аналитических методик. С этой точки зрения особое значение имеют изучение кинетики электродных процессов на твердых электродах, адсорбционных явлений, электродных реакций с участием комплексов, электрохимических процессов в неводных средах, а также прогресс в аналитическом приборостроении (например, создание, приборов, основанных на операционных усилителях), который расширит набор методов исследования стадии растворения и позволит их полнее автоматизировать [1, 19, 20].

1.10 Примеры практических приложений инверсионных методов

В настоящее время в литературе имеется много примеров практического приложения инверсионных методов. В силу их разнородности невозможно привести полный обзор. Приведем несколько примеров анализа различных материалов, которые позволят составить представление о различных способах подготовки образца и о методах предварительного отделения.

Авторы [1] предлагают определение свинца в геологических образцах. Описывается методика подготовки образцов (циркона, монацита, пирохлора, гранита и андезита). Анодное определение свинца включает его продувку азотом, затем проводится предварительный электролиз на висящем ртутном капельном электроде при —0,6 В в течение 1 мин при перемешивании. После стадии успокоения (30 с) потенциал изменяется до 0 В со скоростью 40 мВ/с и регистрируется I—j-кривая. Концентрация свинца определяется по градуировочной кривой. При определении 3-10-3 % Рb, как указывают авторы [1, 21], относительное стандартное отклонение составляет 10%. Разрешение пиков In и Cd и пика Рb хорошее, но определению мешают высокие концентрации Тl.

В работе [22] показана возможность определения примесей кадмия, индия и цинка в свинце методом инверсионной вольтамперометрии. 0,2 г образца металлического свинца в кварцевом стаканчике растворяется в 5 мл горячей 3 М HNO3; Рb удаляется путем электролиза раствора с платиновым сеточным анодом при i = 0,1 А/см2 в течение 1,5 ч. В течение этого времени без прерывания тока электроды 4 раза вынимаются из раствора и осажденный РbО2 растворяется в 6—10 мл HNO3, содержащей 0,1 мл Н2О2. Затем раствор выпаривается досуха, и к остатку добавляется 3 мл Н2О. Выпаривание повторяется еще 3 раза. Наконец, остаток растворяется в 3 мл основного электролита (0,01 М KCl). Если используется ртутный пленочный электрод, то в первую очередь определяют Zn (jel = - 1,6 В, tel зависит от концентрации Zn). Для лучшего разрешения пиков Cd и In добавляется капля 1%-ного раствора этилендиамина; электролиз проводится в течение 3 мин при —1,6 В и определяются Cd и In [jp(Zn) = - 1,1 В; jр(In) = - 0,75 В; jp(Cd) = - 0,65 В]. При содержании 10-6 - 10-8 г/л рассмотренных элементов погрешность составляет 10-20%.

При определении свинца, меди и кадмия в пробах загрязненного атмосферного воздуха авторами [16] использовалась следующая методика. Образцы поглощались на стандартных фильтрах (размер 20 ´ 25 см) из стеклянных волокон (такие фильтры обычно используются при анализе суспендированных частиц). Из сложенного фильтра вырезаются два одинаковых квадрата (площадью по 13 см2), они разрываются на части и помещаются в мерную колбу 25 мл с узким горлом. Органические вещества разлагаются при добавлении 4 мл НСlО4 и последующим нагревании до 300°С в течение 30 мин. После этого колба заполняется водой до метки и оставляется стоять на 1—2 сут. Тем же способом подготавливается и контрольный опыт (кусочки фильтра имеют ту же величину). Из колбы с образцом затем отбирается аликвотная часть, соответствующая содержанию примесей в ~0,3 м3 воздуха, и в ней при обычных условиях на ртутном пленочном электроде с графитовой подложкой, импрегнированной воском, определяются Рb, Сu и Cd. Вначале проводится анализ контрольных растворов и лишь после этого — анализ образца. Поправка контрольного опыта вычитается. Контроль определения осуществляется благодаря проведению анализа образца с одного фильтра в двух разных ячейках, а при повторении анализа используются другие части фильтра. Предел обнаружения названных металлов ~10-6 г/м3. Были проведены исследования содержания свинца в биологических объектах. Например, в работе [23] проведено исследование содержания свинца в крови. 1 мл пробы крови помещается в колбу Киельдаля объемом 100 мл и минерализуется 2,5 мл 20%-ной H2SO4 в HNO3. Спустя 10 мин температура повышается до тех пор, пока не начнут выделяться белые пары H2SO4, после чего смесь охлаждается. Последовательно добавляют 1 мл HNO3, 1 мл 10%-ной НСlО4, две порции по 1 мл НСl (1 : 1) и, наконец, 5 мл воды. После каждой добавки раствор вновь нагревается до появления белых паров H2SO4. После охлаждения к образцу добавляют 20 мл воды и колбу нагревают до тех пор, пока не растворится весь осадок. После охлаждения весь объем раствора переносится в электролизер и проводится накопление при потенциалах от —0,6 до - 0,8В в течение 10 мин. Свинец определяют осциллографической полярографией с переменным током. Определению не мешает железо в концентрациях, в которых оно обычно присутствует в крови (~500 мкг/мл).


Страница: