Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами
Рефераты >> Химия >> Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами

На основе экспериментальных данных было установлено, что наиболее отчетливо перегруппировка наблюдается в случае, когда в структуре силоксановой цепи находится атом переходного металла [22].

Показано, что движущей силой перегруппировки является координационная ненасыщенность металла, находящегося в структуре силоксановой цепи. Предложена схема, объясняющая протекание перегруппировки, включающая стадию образования координационного переходного комплекса.

Рассмотрены экстремальные варианты перегруппировки, находящиеся в полном соответствии с предложенной схемой:

а) глубокое протекание перегруппировки, приводящие к выведению металла в форме оксида из силоксановой матрицы;

б) торможение этого процесса в случаях, когда достижимо заполнение координационной сферы металла за счет "внутренних ресурсов". Показано, что наиболее эффективное торможение перегруппировки достигается при заполнении координационной сферы металла атомами кислорода, входящими в состав группировки Si-O-M, а также силанолят-анионами Si-O-.

Проведен сравнительный анализ состава природных металлосиликатов, в результате которого установлено, что закономерности, выведенные при изучении химии МОС, могут быть приложены к описанию некоторых геохимических процессов образования минералов.

Авторами [23] была предпринята попытка синтеза поливольфрамофенилсилоксанов, содержащих металл в высшей степени окисления, взаимодействием оксихлорида вольфрама (W+6) с полифенилсиликонатом натрия. В результате получен поливольфрамофенилсилоксан с соотношением кремния к металлу равным 14. Резкое отличие соотношения кремния к металлу от заданного в растворимых в органических растворителях продуктах реакции авторы объясняют тем, что окончательное формирование полимерной структуры происходит при температуре кипения растворителей. Учитывая высокую функциональность мономера, это может приводить к образованию сшитых структур, что подтверждается образованием нерастворимых гетеросилоксанов с высоким содержанием металла.

3. Взаимодействие органилсиланолятов щелочных металлов с хлоридами металлов

Наиболее удобным в препаративном отношении и универсальным методом синтеза ПМОС является метод, основанный на взаимодействии хлоридов металлов с органилсиланолятами щелочных металлов [24-27]. Данный способ практически незаменим для получения ПМОС циклолинейного строения.

Данный метод образования полимеров отражен следующими схемами:

RSi(OH)2ONa+MYx→M[O(OH)2SiR]x+xNaY (7)

M[O(OH)2SiR]x→{[RSi(O)1.5MOx/2}+xH2O (8)

Методика получения ПМОС состоит из двух стадий: сначала при действии дозированного количества щелочи на органосилоксан получают органосиланолят, далее с помощью обменной реакции органосиланолята и галогенида поливалентного металла формируют металлосилоксановый фрагмент Si-O-M-O-Si, при этом металл "встраивается" в силоксановую цепь. Несмотря на кажующуюся простоту данных схем, соотношение кремния к металлу в получаемых полигетеросилоксанах часто отличается от исходного, они неоднородны по составу, что указывает на сложность процессов полимерообразования. Предложены методы синтеза в водно-органических средах: в этом случае соотношение кремния к металлу в полимерах зачастую сильно завышены относительно исходного и они неоднородны по составу [25,28].

По мнению ряда других авторов при проведении процесса в водно-органических средах преобладающее влияние оказывает гидролиз исходных соединений: реакция по своему характеру мало чем отличается от согидролиза [29].

Методом, основанным на взаимодействии хлоридов металлов с мононатровыми солями органилсилантриолов в безводной среде удается достигнуть значительно лучших результатов. При проведении процесса в среде инертного растворителя, выход полимера значительно улучшается в присутствии бутилового спирта, вероятно вследствие гомогенизации системы [29]. Но данный способ является технологически более трудоемким из-за трудностей получения безводных хлоридов металлов. Однако и в этом случае в реакционной системе будет содержаться некоторое количество воды [30].

Для исключения влияния побочных процессов был предложен новый метод получения ПМОС в среде диметилсульфоксида (ДМСО), который эффективнее чем вода сольватирует ионы металлов [31]. Насыщая координационную сферу металла, ДМСО препятствует протеканию нежелательных побочных процессов, что приводит к получению ПМОС более регулярного строения. Предложенный метод не требует использования в синтезе ПМОС безводных галогенидов металлов и абсолютных растворителей. В полученных полимерах сохраняются соотношения кремния к металлу и они практически однородны по составу.

Метод получения каркасных и полимерных металлоорганосилоксанов, в котором использовали для синтеза полиметаллоорганосилоксанов не силаноляты натрия, полученные щелочным расщеплением предварительно синтезированных полиорганосилоксанов, а мономерные органотриалкоксисиланы предложен авторами [32]. Суть метода заключается в том, что органотриалкоксисилан обрабатывают водно-метанольным раствором едкого натра, причем количество воды должно обеспечивать полный гидролиз алкоксигрупп.

4. Расщепление силоксановой связи оксидами металлов

Одним из путей формирования гетеросилоксановой связи является взаимодействие оксидов элементов с полиорганилсилоксанами по схеме:

Реакции расщепления силоксановой связи под действием некоторых оксидов металлов подробно изучены авторами [8-9]. В качестве полимерных кремнийорганических производных наиболее часто использовались полидиметилсилоксан (ПДМС) и циклический октаметилциклотетрасилоксан (D4).

При расщеплении органосилоксанов кислотами Льюиса [8-9,33] наблюдается перенос галоида металла к атому кремния одновременно сопровождается формированием связи Si-O-M. При взаимодействии органохлорсиланов с оксидом поливалентного металла возможен обратный процесс – перенос атома галогена от кремния к металлу с образованием галоидметаллоорганосилоксанов. Образующийся галоидметаллоорганосилоксан претерпевает межмолекулярную перегруппировку. Ступенчатое протекание перегруппировки приводит к увеличению длины силоксановой цепи через образование циклических и паркетообразных структур.

Позднее было показано, что одним из перспективных методов модифицирования цепи этих полимеров является реакция расщепления связи Si-O-M под действием неорганических и органических производных пятивалентного фосфора [34].

Также исследовались реакции расщепления связи Si-O-Si в силоксанах под действием органических окисей и гидроокисей металлов, при этом получали полимеры, выходы которых были количественные, и были однородными по составу [35].

5. Метод механохимического синтеза

Все большее значение в качестве одного из перспективных методов получения новых соединений приобретает метод механохимического (твердофазного) синтеза. [36-41]


Страница: