Фазовые равновесия в системе MgS-Y2S3
Рефераты >> Химия >> Фазовые равновесия в системе MgS-Y2S3

2.1.3.Дюрометрический анализ.

Микротвердость измеряли на тех же образцах, которые готовили для исследования микроструктуры. Для определения микротвердости использовали прибор типа ПМТ-3. Метод обладает высокой чувствительностью, что иногда играет отрицательную роль, т. к. любые посторонние факторы сильно влияют на величину микротвердости. Поэтому при измерении микротвердости следует тщательно готовить образцы и соблюдать необходимые правила при проведении измерений:

1. На результаты исследования в значительной степени влияет размер зерна и его химическая неоднородность. Микротвердость значительно увеличивается при её измерении вблизи границ зерна изменяемой фазы. Поэтому при исследовании диаграмм состояние на микротвердость имели крупнозернистую структуру.

2. На величину микротвердости влияют измерения при разных нагрузках. Поэтому те измерения, которые необходимо сравнивать производят при одной и той же нагрузке.

3. Следует придерживаться определенной скорости нагружения и выдержки под нагрузкой. Быстрое нагружение снижает значение микротвердости, т. к. деформация образцов при этом происходит не только вследствие статистического действия груза, но и за счет динамического действия. При длительной выдержке под нагрузкой из-за сотрясений и вибраций, которые возможны в помещении результаты измерения также искажаются. Лучшее время нагружения 5-8 сек., а выдержка под нагрузкой 5-10 сек.

4. Диагональ отпечатков необходимо измерить как можно точнее. Для этого надо следить, чтобы поверхность шлифа была строго параллельной предметному столику и её изображение в поле зрения микроскопа - контрастным.

5. Для расчета микротвердости необходимо измерить диагонали 5-6 отпечатков алмазной пирамиды и взять среднее арифметическое. Длину диагонали определяют в делениях окулярмикрометра по разнице отпечатков в начале и в конце диагонали.

Разница отпечатков N умножается на цену деления измерительного барабана в микронах С, являющийся истинной величиной диагонали отпечатка:

d=N*C

Зная длину диагонали, микротвердость можно определить пользуясь таблицами или по формуле:

Hh=1854*P/d;

Где Hh-число микротвердости, кг/мм2;

Р-нагрузка;

d-длина диагонали отпечатка, мкм[14].

2.1.4.Визуально - политермический анализ.

Визуально - политермический анализ состоит в наблюдении за плавлением кристаллов при нагревании с одновременной регистрацией соответствующей температуры и за появлением первых кристаллов, выделяющихся при охлаждении расплава.

Исследуемую пробу помещали в молибденовый тигель, который, в свою очередь ставили на термопару ВР-20/ВР-5.

Рабочую камеру 2-3-х кратно вакуумировали; каждый раз заполняли её аргоном. Съемку проводили в потоке аргона. Программированный нагрев осуществляли регулятором типа «РИФ» со скоростью повышения температуры от 300 до 500°С/мин. Эти скорости используются для подавления термической диссоциации (т. е. для подавления процесса улетучивания серы). Однако небольшие количества серы успевают улетучиться с поверхности образца. Для того, чтобы это количество серы было как можно меньше, образец брали в виде кусочков, а не в виде порошка. Градуировку проводили по репирам меди (Тпл=1083°С), платины (Тпл=1773°С), кремния (Тпл=1500°С). Сигнал от термопары записывали в координатах температура-время.

При плавление веществ на кривых наблюдали четко выраженные замедления (площадки) скорости нагрева пробы. Одновременно состояние пробы контролировали визуально через бимономерный микроскоп МБС-2.

Многократное плавление проб одних и тех же составов показало, что погрешность измерения температуры не превышала 0,5 % от значения определенной величины. Анализ проводится синхронно на одной и той же установке с целью определения температур плавления индивидуальных фаз, а также температур начала плавления образца (солидус), и окончания плавления (ликвидус). При этом фиксировали следующие изменения в состояния образцов:

появление капель – начало плавления;

исчезновение кристаллов – конец плавления;

появление кристаллов – начало кристаллизации;

исчезновение последней капли – конец кристаллизации.

Недостатками метода является то, что при этом способе возможны ошибки вносимые за счет большого перепада температур в самом исследуемом веществе. Вещества, по которым осуществляется градуировка и вещества нами исследуемые, имеют различную природу. Имеется и субъективная ошибка (т. к. показания регистрируются глазами, а не прибором).

Несмотря на указанные недостатки, этот метод в виду его простоты, широко применяется для быстрого определения температур начала плавления и кристаллизации[14].

Рис.4 Установка визуально – политермического анализа

1 - молибденовый тигель, 2 - нагреватель, 3 - ВР-20 термопара, 4 - токоподводы, 5 - экран, 6 - охлаждаемый корпус, 7 - кварцевое прозрачное стекло, 8 - крышка, 9 - микроскоп, 10 - потенциомер КСП – 4.

Глава 3. Экспериментальная часть.

3.1. Синтез веществ.

3.1.1. Синтез Y2S3 в потоке сульфидирующих агентов.

Метод синтеза веществ в потоке H2S, H2 и CS2 предназначен для получения бинарных и тройных сульфидов путем воздействия сульфидирующих агентов на соединение металлов. Установка, используемая для синтеза веществ, состоит из

· Двух печей;

· Двух реакторов;

· Кварцевой пробирки;

· РИФ –101;

· Термопары.

Температура в печах контролируется с помощью термопары. Газ – носитель (аргон) поступает р реактор синтеза сероуглерода. Энергически целесообразно проводить сульфидирование сероуглеродом, т. к.

G(H2S)=-33,626 КДж/моль, а

G(CS2)=65,060 КДж/моль.

Сероуглерод получают в кварцевом реакторе непосредственно в зоне сульфидирования при взаимодействии паров серы с нагретым до 10000С древесным углем;

С +2S = CS2

Смесь газов CS2 и Ar поступает в печь 4, которая является печью синтеза, где происходит сульфидирование образцов. В печи 4 находится вертикальный кварцевый реактор с кварцевой пробиркой 6, загруженной веществом. Смесь газов через кварцевую трубку 9 походит до самого дна кварцевой пробирки и сквозь все количество вещества (как бы барбатируется в образце). Остатки процесса сульфидирования уносятся потоком газа и сжигаются.

Синтез Y2S3 осуществляли путем воздействия на оксид иттрия сероуглерода и сероводорода при температуре 10000С. реакция сульфидирования протекает через образование промежуточных оксисульфидных соединений.

2Y2О3 + 3CS2 ®2Y2S3 + 3CО2

Y2О3 + 3H2S®Y2S3 + 3H2O.

Рис. 5. Установка синтеза веществ в потоке сульфидирующих агентов.

1 – реактор, 2 – термопары, 3 – кварцевая трубка, 4,5 – печи, 6 – кварцевая пробирка, 7 – пары серы, 8 – уголь. 3.1.2. Синтез MgS.

MgS получали методом прямого синтеза. Исходным веществами являются Mg oc.ч и S oc.ч (14-4). Навески Mg и S поместили в кварцевую ампулу, вакуумировали до ост. Давления 10-3 мм. рт. ст. и запаяли. Вакуумированную и запаянную ампулу поместили в муфельную печь при температуре 4000С. эта температура была выбрана исходя из того, что сера при 4500С кипит. Резкий нагрев ампулы может вызвать ее взрыв. Температуру поднимали медленно до 8000С, визуально контролируя количество серы в ампуле, до полного вступления серы в реакцию. После вступления серы в реакцию ампулу выдерживали при 10000С. этот процесс очень длительный и исчезновение серы происходит не ранее, чем на 15-20 сутки непрерывного синтеза


Страница: