Задача Лагранжа
Рефераты >> Математика >> Задача Лагранжа

При этих допущениях моделью потребительского оптимума служит задача Лагранжа

u(Х) ® max

при условии

å рiхi = m,

где рi - цена i - го блага, а m - денежный доход потребителя. Условия оптимальности имеют вид

Введем для удобства обозначение и представим условия оптимальности в форме

Формально эта система похожа на систему (39), описывающую оптимальность в задаче о рационе Робинзона. Но здесь имеются и существенные отличия. Во-первых, теперь мы отказались от предположения о суммируемости полезностей различных благ, и ui, - не производные полезностей отдельных благ, а лишь частные производные общей функции полезности. Во-вторых, u(Х) - это не полезность в некоторой абсолютной количественной шкале, а лишь функция, согласованная с предпочтениями и отражающая только порядковые отношения. Тем не менее, перечень аналогичных свойств можно продолжить. Для любой пары благ (i, j) в точке оптимума должны выполняться соотношения

Отметим, что выражение в левой части — это норма замещения i-го блага j-м при постоянстве объемов всех остальных благ: в пределах поверхности безразличия должно выполняться равенство

то есть

Как мы уже выяснили, значение множителя Лагранжа должно выражать предельную полезность лимитирующего ресурса, в данном случае - денежного дохода (или, проще, - предельную полезность денег). Но поскольку значения функции u(Х) не являются абсолютными значениями полезности, постольку и полная полезность денег

имеет смысл лишь по отношению к выбранной шкале полезностей. То же относится и к предельной полезности денег.

Что произойдет, если функцию полезности u(Х) заменить равносильной ей функцией u*(Х)? Отношение предпочтения сохранится, если u*(Х) = j(u(Х)), где j(u) - монотонно возрастающая функция. Правило дифференцирования сложной функции позволяет утверждать, что

где j'(u) - значение производной dj (u)/du. Заметим, что множитель j(u) является одним и тем же для всех благ. Поэтому условия оптимальности

ui(Х) = lpi

и

ui(Х) = l рi

определяют одно и то же положение потребительского оптимума в пространстве благ. Различаются лишь значения множителей Лагранжа:

l = j'(u) l (47)

К этому результату можно подойти с другой стороны. Задавшись некоторым значением m дохода, при использовании функций u(Х) и u*(Х) мы получим один и тот же оптимальный набор благ Х0 . Общая полезность денег в одной шкале примет значение U(m) = u(Х0), в другой . Таким образом, при любом уровне дохода

U'(m) = j(U(m)), (48)

то есть общие полезности дохода в разных шкалах связаны между собой точно так же, как и полезности наборов благ. А так как множитель Лагранжа в рассматриваемой задаче - это предельная полезность денежного дохода, то, применяя к равенству (48) правило дифференцирования сложной функции, мы снова придем к равенству (47).

Заметим, что оптимум потребителя не всегда может быть определен в рамках задачи Лагранжа. Множество допустимых решений ограничено не только бюджетом потребителя, но и условиями неотрицательности объемов благ:

Если на бюджетной поверхности норма замещения каких-либо двух благ всюду больше или всюду меньше отношения цен, то равенство (46) не может выполняться ни в одной точке. Задача не имеет внутреннего решения, а имеет угловое решение. В рамках задачи Лагранжа не могут быть описаны решения, которые лежат на границах области, определяемой неравенствами.

11. Лабораторные задачи

Задача 1: Некоторое торговое предприятие в течении промежутка времени Т собирается завести и реализовать некоторый товар R общим объёмом. Стоимость завоза одной партии равна Сs, а хранение обходится С1. Необходимо определить оптимальный размер поставки, чтобы суммарный, а так же количество поставок, интервал времени между поставками и минимальные суммарные издержки. Т.е. надо найти: qo, no, tso, Qo.

Вариант 1.

T = 24

R = 240000

Cs = 1000

C1 = 30

Вариант 2.

T = 12

R = 15000

Cs = 800

C1 = 60

Вариант 3.

T = 6

R = 9000

Cs = 450

C1 = 20

Вариант 4.

T = 12

R = 9000

Cs = 1200

C1 = 40

Вариант 5.

T = 8

R = 13000

Cs = 900

C1 = 46

Вариант 6.

T = 3

R = 5000

Cs = 300

C1 = 15

Вариант 7.

T = 12

R = 17000

Cs = 1400

C1 = 60

Вариант 8.

T = 6

R = 9000

Cs = 1300

C1 = 30

Вариант 9.

T = 24

R = 250000

Cs = 12000

C1 = 65

Вариант 10.

T = 12

R = 10000

Cs = 3000

C1 = 35

Задача 2: Торговое предприятие намерено завести и реализовать товар n видов объемами соответственно Rn. Весь объем складских помещений составляет V. Стоимость хранения одной единицы товара равна C1n. Расходы по завозу Csn. При этом каждая из n единиц занимает Vn метров. Найти оптимальные размеры поставок каждого из видов товара.

Вариант 1.

n = 2

R1 = 32000, R2 = 30000;

C11 = 9, C12 = 10;

Cs1 = 1100, Cs2 = 1350;

V1 = 2, V2 = 4;

V = 20000;

Вариант 2.

n = 4

R1 = 4000, R2 = 2000,

R3 = 5000, R4 = 5000;

C11 = 6, C12 = 7, C13 = 9,

C14= 12;

Cs1 = 1100, Cs2 = 1000,

Cs3 = 2000,

Cs4 = 3000;

V1 = 3, V2 = 5, V3 = 5, V3 = 8;

V = 24000;

Вариант 3.

n = 2

R1 = 3500, R2 = 19000;

C11 = 6, C12 = 5;

Cs1 = 1900, Cs2 = 1200;

V1 = 4, V2 = 5;

V = 25000;

Вариант 4.

n = 3

R1 = 4000, R2 = 2000,

R3 = 1000;

C11 = 8, C12 = 8, C13 = 9;

Cs1 = 200, Cs2 = 600, Cs3 = 200;

V1 = 2, V2 = 5, V3 = 3;

V = 9000;

Вариант 5.

n = 2

R1 = 4200, R2 = 2000;

C11 = 6, C12 = 8;

Cs1 = 1500, Cs2 = 1900;

V1 = 3, V2 = 6;

V = 15000;

Вариант 6.

n = 3

R1 = 24000, R2 = 19000,

R3 = 20000;

C11 = 6, C12 = 10, C13 = 10;

Cs1 = 1900, Cs2 = 2000,

Cs3 = 2000;

V1 = 7, V2 = 5, V3 = 5;

V = 30000;

Вариант 7.

n = 3

R1 = 32000, R2 = 5000,

R3 = 21000;

C11 = 8, C12 = 5, C13 = 10;

Cs1 = 1800, Cs2 = 990,

Cs3 = 1000;

V1 = 4, V2 = 2, V3 = 3;

V = 26000;

Вариант 8.

n = 2

R1 = 12500, R2 = 8200;

C11 = 3, C12 = 8;

Cs1 = 900, Cs2 = 1900;

V1 = 3, V2 = 5;

V = 15000;

Вариант 9.

n = 3

R1 = 32000, R2 = 44000,

R3 = 20000;

C11 = 8, C12 = 10, C13 = 15;

Cs1 = 1500, Cs2 = 1900,

Cs3 = 2500;


Страница: