Строение и принцип действия переносчиков
Рефераты >> Биология >> Строение и принцип действия переносчиков

Удельная радиоактивность субстрата с обеих сторон мембраны одинакова. В насыщающей концентрации субстрат находится на транс-стороне, a [S] цис изменяется. В этом случае измеряют суммарный перенос, поскольку радиоактивное вещество пересекает мембрану в обоих направлениях. При таких условиях измерения состояние системы близко к равновесному.

Во всех случаях определяют Vmax и Км которые при этом не обязательно совпадают для разных подходов. Для разных моделей можно получить кинетические уравнения для стационарного состояния и проверить их. Как и в классических работах по энзимологии, очень полезным может оказаться использование ингибиторов. При этом ингибиторы можно вводить с любой стороны мембраны, что позволяет получить дополнительную информацию.

Такого рода подходы можно применять при работе с клетками, субклеточными мембранными везикулами или искусственными реконструированными системами. Для исследования работы ионных каналов обычно применяют электрические методы, которые дают огромные преимущества. Их мы рассмотрим в следующем разделе.

5. Некоторые симпортеры, антипортеры и унипортеры

К настоящему времени достаточно хорошо охарактеризовано несколько систем, катализирующих транспорт одного или более растворимых веществ. При этом скорость переноса с помощью этих белковых комплексов гораздо ниже, чем даже через наиболее "медленные" каналы. В данном разделе мы рассмотрим переносчик глюкозы и анионный переносчик (белок полосы 3) из мембраны эритроцита, лактозопермеазу из Е coli и группу митохондриальных переносчиков. Транспортные функции этих белков весьма разнообразны: они катализируют облегченную диффузию одного какого-то вещества, симпорт Н+ и сахара, в результате чего происходит накопление сахара в клетке, и антипорт растворенного вещества.

Отметим некоторые общие свойства этих процессов:

1. В некоторых случаях эти транспортные белки являются олигомерами, обычно димерами. Однако, по-видимому, только у митохондриальных переносчиков (например, у системы обмена ATP/ADP) канал образуется из структурных элементов разных мо номеров. Во всех других случаях, по всей вероятности, каждая субъединица функционирует независимо, даже если она является частью олигомера.

2. Весьма высокая степень гомологии транспортных белков указывает на их близкое структурное родство, хотя они существенно различаются как по субстратной специфичности, так и по функциям. Это позволяет предположить, что для широкой группы функционально различных переносчиков характерны общие транспортные механизмы.

3. Для анализа работы в большинстве случаев транспортных белков можно с успехом использовать модели с чередованием кон- формационных состояний, аналогичные модели, схематически представленной на рис.2. При этом лимитирующей стадией является конформационное изменение с той стороной мембраны, где находится место связывания.

4. В большинстве случаев сродство переносчика к транспортируемому веществу не зависит от того, к какой стороне мембраны обращено место связывания. Однако для первичных активных транспортных систем наблюдается иная картина.

5. Все рассматриваемые здесь переносчики обычно чувствительны к реагентам, действие которых направлено на сульфгидрильные группы. Однако это не обязательно должно означать, что между переносчиками имеется значительное структурное сходство или они используют одинаковый механизм транспорта. Например, установлено, что ни один из восьми остатков цистеина лактозопермеазы не участвует непосредственно в транспорте. Высказывалось также предположение, что погруженные в мембрану остатки пролина распределены в транспортных белках непропорционально, однако значение этого факта остается неясным.

5.1 Белок полосы 3 - анионный переносчик из мембраны эритроцитов

На долю белка полосы 3 приходится около 25% общего количества мембранных белков эритроцита человека; сходные белки присутствуют также в неэритроидных клетках. Этот белок выполняет несколько функций, причем их можно соотнести с двумя основными доменами белковой молекулы. N-концевая часть (41 000 Да) является гидрофильной и локализована с цитоплазматической стороны эритроцитарной мембраны. Она содержит места связывания для компонентов цитоскелета (анкирина), а также для ферментов гликолиза и гемоглобина. Этот домен можно удалить путем протеолиза, не затронув С-концевого домена (52 000 Да), который остается связанным с мембраной и опосредует Сl - /НСО3 - обмен, а также образует канал в мембране, через который может проникать вода. Внецитоплазматический компонент этой части белка содержит также углеводные антигенные детерминанты нескольких систем групп крови. В мембране белок полосы 3 находится в форме димера или тетрамера.

Было проведено клонирование и секвенирование участка ДНК, кодирующего белок полосы 3 из эритроцитов мыши. Эти данные послужили основой для построения модели белка полосы 3. Было высказано предположение, что он имеет 12 трансмембранных α-спиралей, при этом некоторые из них являются амфифильными. Экспериментальные данные, подтверждающие эту гипотезу, получены только для нескольких участков полипептида и основаны главным образом на результатах протеолиза и локализации связанных углеводов.

Обширные кинетические исследования согласуются с моделью с чередованием конформаций и одним местом связывания (см. рис.2). Однако скорость равновесного анионного обмена с помощью переносчика по меньшей мере в 104 раз превышает скорость транспорта как такового. Следовательно, незагруженный переносчик не претерпевает быстрых конформационных превращений, необходимых для того, чтобы анион мог связаться с мембраной. По данным ЯМР с использованием 35С1, у переносчика имеется единственное место связывания, и оно может быть обращено как внутрь, так и наружу. Результаты опытов с использованием ингибиторов транспорта тоже свидетельствуют о том, что в канале имеется единственное место связывания аниона, локализованное где-то в середине канала. При этом предполагается, что переход этого места связывания с одной стороны мембраны на другую блокируется неким "скользящим барьером", который перемещается вдоль канала в результате конформационных изменений. Лимитирующей стадией является конформационный переход нагруженного переносчика, но происходит он достаточно быстро, с частотой 105 с-1 при 37 °С. По-видимому, такая высокая скорость предотвращает значительные конформационные изменения в белке. Природа этого конформационного перехода и точная структура канала экспериментально не определены.

Конформационный переход загруженного переносчика, лимитирующий весь транспортный процесс, лишь в очень малой степени зависит от мембранного потенциала. Это согласуется с таким конформационным переходом, в результате которого через мембрану перемещается 0,1 связанного с белком заряда. Если этот переход сопряжен с перемещением анионного субстрата, то он должен сопровождаться переносом противоиона, например заряженной аминокислотной группы. В отличие от этого потенциалзависимое конформационное изменение, индуцирующее открывание натриевого канала, приводит к результирующему перемещению через мембрану шести связанных с белком зарядов.


Страница: