К155ие9

ФР — фоторезист

Рисунок 3 - Структура биполярного тран­зистора на различных этапах изолланарлого процесса

По завершении процесса фотолитографии фоторезист не уда­ляется и проводится ионное внедрение бора для создания р+-обла­стей, при этом маской при локальном внедрении выступают двух­слойная пленка SiO2+Si3N4 и фоторезист. Толщина р+-слоя вы­бирается таким образом, чтобы часть этого слоя после термичес­кого окисления сохранилась под слоем SiO2. Наличие сильнолеги­рованной р+-области под изолирующим слоем SiO2 препятствует образованию под ним поверхностного инверсионного канала.

После удаления фоторезиста проводится локальное термиче­ское окисление для получения изолирующих областей SiO2, пере­крывающих по толщине весь эпитаксиальный слой. Пленка Si3N4 удаляется химическим травлением в горячей ортофосфорной кис­лоте.

По завершении операций по созданию изоляции формируется транзисторная структура. Вновь проводится термическое окисле­ние и второй фотолитографией в слое фоторезиста создается ри­сунок базовых областей. При использовании фоторезиста в каче­стве маски проводится локальное ионное внедрение бора через пленку Si02. Внедрение примеси через пленку SiO2 ослабляет ка-налированный пучок ионов и снижает концентрацию радиацион­ных дефектов. Третьей фотолитографией создается рисунок кон­тактных окон. Размер области SiO2, разделяющей в топологичес­ком плане области базы и эмиттера, выбирается соответствующим минимальному зазору, который может быть получен между метал­лическими контактами. Четвертая фотолитография формирует рисунок n+-областей эмиттера и коллектора. После плазмохимиче-ского травления SiO2 не снятый фоторезист является маской при локальном внедрении мышьяка. После удаления фоторезиста про­водится отжиг при Т = 900°С, активирующий мышьяк и устраня­ющий радиационные дефекты.

Для получения омических контактов и электрической разводки между элементами на поверхность подложки наносится пленка алюминия и вжигается в водороде при Т = 500°С. Пятой литогра­фией формируется рисунок электрической разводки. Поверхность готовой микросхемы защищается пленкой SiN, получаемой в про­цессе плазмохимического осаждения при температуре 400 °С.

3 Технология ТТЛ

На рисунке 4 показана схема самого распространенного логичес­кого элемента-основы серии К 155 и ее зарубежного аналога-серии 74.

в-МТТЛ; б—СТТЛ; а-МмТТЛ

Рисунок 4 - Принципиальные схемы первичных логических элементов ТТЛ

Эти серии принято называть стандартными (СТТЛ). Логический элемент серии К155 имеет среднее быстродействие 1ад,р,ср = 13 нс и сред­нее значение тока потребления З мА. Таким образом, энер­гия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.

Для обеспечения выходного напряжения высокого уровня Цвых > >2.5 В (как и в схеме на рис. 1.6, а) в схему на рис. 1.6,б потребовавлось добавить диод сдвига уровня VD4, падение напряжения на кото­ром равно 0.7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе ин­вертора, показанного на рис. 1.6,б (серия К155), имеют очень большую номенклатуру, широко выпускаются, а серия продолжает развиваться.

На рис. 1.6, а показан третий вариант ТТЛ первоначальной раз­работки—маломощный логический элемент (МмТТЛ). Он лежит в ос­нове отечественной серии К134 и зарубежной с названием 74L (здесь L —low — означает малое быстродействие и одновременно малое по­требление тока питания). Этот элемент потребляет мощность питания примерно 1 мВт при среднем времени задержки распространения 1зд,р,ср==33 нс, что соответствует энергии, потребляемой на перенос еди­ницы информации Эпот = 33 пДж. Номиналы резисторов в этом логическом элементе относительно велики. Сейчас эти серии не развиваются. В конце 70-х годов микросхемы ТТЛ первоначальной разработки стали активно заменяться на микросхемы ТТЛШ, имеющие во внутренней структуре р-п переходы с барьером Шотки. Напомним, что эффект Шотки снижает пороговое напряжение открывания кремниевого диода от обычных 0.7 В до 0.2 .0.3 В и значительно уменьшает время жизни неосновных носителей в. полупроводнике. Эффект основан на том, что в р-n переходе или рядом с ним присутствует очень тонкий слой металла, богатый электронами — свободными носителям.

Сложности практического освоения технологических процессов изготовления полупроводниковых структур с эффектом Шотки, однако, были очень велики.

В основе транзистора с переходом Шотки (транзистора Шотки, ТШ) находится известная схема ненасыщаемого РТЛ-ключа (рисунок 5, а).

Рисунок 5 - Ненасыщаемый элемент РТЛ (а), транзистор с диодом Шотки (б) , символ транзистора Шотки (в)

Здесь транзистор удерживается от перехода в режим глубокого насы­щения с помощью дополнительной нелинейной входной цепи с диодом. Обычный базовый резистор Rg здесь составлен из двух: Rci и Rgz-Если на вход данного элемента РТЛ от переключателя S1 поступает напряжение высокого уровня, через резистор Rg; течет входной ток 1. Номиналы Rd и Код нетрудно рассчитать так, чтобы пороговое напряжение открывания диода Uпор оказалось бы меньше, чем падение на­пряжения на резисторе Rgg, т. е. IgRga. Здесь символом Ig обозначен предельный, близкий к насыщающему базовый ток транзистора VT1. Если диод VD1 откроется, через него потечет избыточный входной ток который теперь минует базу транзистора и получит путь для стекания в землю через промежуток транзистора коллектор — эмиттер.


Страница: