Методы преобразования сигналовРефераты >> Радиоэлектроника >> Методы преобразования сигналов
Основные сведения
Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число
, что при любом значении х выполняется равенство
. Число Т называется периодом функции.
Отметим некоторые с в о й с т в а этой функции:
1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.
2) Если функция f(x) период Т , то функция f(ax) имеет период
.
3) Если f(x) - периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство
.
Тригонометрический ряд. Ряд Фурье
Если f(x) разлагается на отрезке
в равномерно сходящийся тригонометрический ряд:
(1)
,то это разложение единственное и коэффициенты определяются по формулам:
, где n=1,2, . . .
Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а
коэффициентами ряда Фурье.
Достаточные признаки разложимости функции в ряд Фурье
Точка
разрыва функции
называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке.
ТЕОРЕМА 1 (Дирихле). Если
периодическая с периодом
функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [
] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной).
ТЕОРЕМА 2. Если f(x) периодическая функция с периодом
, которая на отрезке [
] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой).
ПРАКТИЧЕСКАЯ ЧАСТЬ
Разложение функций в тригонометрический ряд Фурье
Исходные данные :
(Рис. 1)
Функция периодическая с периодом
.( f(x+T)=f(x) ) Функция имеет на промежутке
конечное число точек разрыва первого рода.
Сумма ряда в точках функции сходится к значению самой функции, а в точках разрыва к величине
, где
-точки разрыва.
Рис. 1
Производная также непрерывна везде, кроме конечного числа точек разрыва первого рода. Вывод: функция удовлетворяет условию разложения в ряд Фурье.
1) F(x) - кусочно-непрерывна на интервале
.
2) F(x) - кусочно-монотонна.
Так как отсутствует симметрия относительно OY, а также центральная симметрия - то рассматриваемая функция произвольна.
Представление функции рядом Фурье.
Из разложения видим, что при n нечетном
принимает значения равные 0 , и дополнительно надо рассмотреть случай когда n=1.
Поэтому формулу для
можно записать в виде:
( так как
).
Отдельно рассмотрим случай когда n=1:
.
Подставим найденные коэффициенты в
получим:
и вообще
.
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника
,
2-ая гармоника
,
3-ая гармоника
,
4-ая гармоника
,
5-ая гармоника
,
и общий график F(x), сумма выше перечисленных гармоник. и сами гармоники.
Запишем комплексную форму полученного ряда
Для рассматриваемого ряда получаем коэффициенты (см. теорию)
