Научно-исследовательская работа школьников в РБРефераты >> Педагогика >> Научно-исследовательская работа школьников в РБ
откуда, преобразовывая, получим
t× ( (x-a1) … (x-ai) - (x-ai+1) … (x-an)) = d× ( (x-a1) … (x-ai) - (x-ai+1) … (x-an)).
Это равенство выполнено для всех x, поэтому можно считать, что
(x-a1) … (x-ai) - (x-ai+1) … (x-an) ¹ 0, и t = d.
Таким образом,
f1 (x) = f2 (x) = t× (x-a1) … (x-ai) +1 = t× (x-ai+1) … (x-an) -1.
Применим к этому равенству обобщенную теорему Виета и рассмотрим свободные члены
(-1) i×t×a1×…×ai+1 = (-1) i×t×ai+1×…×an-1.
Перенесем слагаемые с t влево, без t вправо. Вынесем t за скобки
t× (a1×…×ai - ai+1×…×an) = ±2.
Выражение в скобках - целое число. Поэтому t может принимать только 4 различные значения: ±1 и ±2. Но как показано выше, m = t×t. Следовательно только для двух целых значений m многочлен f (g (x)) приводим. Это m = 1 и m = 4.
Приведем примеры приводимых многочленов для этих m.
(x-1) (x-2) (x-3) (x-4) + 1 = ( (x-1) (x-4) +1) × ( (x-2) (x-3) -1)
Действительно, ( (x-1) (x-4) +1) × ( (x-2) (x-3) -1) = (x-1) (x-2) (x-3) (x-4) - x2+5x - 4 + x2 - 5x+6-1= = (x-1) (x-2) (x-3) (x-4) + 1.
Для m = 4
4x (x-1) +1 = 4x2 - 4x + 1 = (2x-1) (2x-1)
Ответ: f (g (x)) неприводим при всех целых mÏ{1; 4}.
2. Допустим, что m (x-a1) 2… (x-an) 2+1 приводим, тогда
m (x-a1) 2… (x-an) 2+1 = f1 (x) f2 (x).
Как и выше, f1 (x) = f2 (x) =1 либо f1 (x) = f2 (x) = - 1 для всех x из {a1; …; an}. Если f1 (x) принимает значения и 1 и - 1, то в силу непрерывности многочлена, f1 (x) = 0 для некоторого x. Но тогда для этого x выполнено равенство
m (x-a1) 2… (x-an) 2+1 = f1 (x) f2 (x) = 0,
чего быть не может ни при одном натуральном m. Поэтому для определенности будем считать, что f1 (ai) = f2 (ai) =1 для всех i от 1 до n. (В случае, когда, f1 (ai) = f2 (ai) =-1 для всех i от 1 до n доказательство проводится аналогично) Как и в пункте 1, получаем
f1 (x) = t× (x-a1) … (x-an) +1;
f2 (x) = d× (x-a1) … (x-an) +1.
Отсюда,
m (x-a1) 2… (x-an) 2+1 = f1 (x) ×f2 (x) = t×d× (x-a1) 2… (x-an) 2+ (t+d) × (x-a1) … (x-an) +1.
Из равенства многочленов получаем m = t×d и (t+d) × (x-a1) … (x-an) = 0. Последнее равенство выполнено при всех значениях x, поэтому из него следует, что t+d = 0, то есть t = - d. Откуда натуральное m = - t2. Противоречие показывает, что многочлен m (x-a1) 2… (x-an) 2+1 неприводим. Утверждение доказано.
3. Рассмотрим неприводимый многочлен ax2+bx+1. Допустим, дискриминант b2-4a<0, а многочлен a× (x-a1) 2… (x-an) 2 + b× (x-a1) … (x-an) +1 = f1 (x) ×f2 (x) приводим. Как и в пункте 2, учитывая, что при отрицательном дискриминанте многочлен не будет обращаться в 0, получаем:
f1 (x) = t× (x-a1) … (x-an) +1;
f2 (x) = d× (x-a1) … (x-an) +1.
Отсюда,
a× (x-a1) 2… (x-an) 2 + b× (x-a1) … (x-an) +1 =
= f1 (x) ×f2 (x) = t×d× (x-a1) 2… (x-an) 2+ (t+d) × (x-a1) … (x-an) +1.
Из равенства многочленов получаем, что a = t×d и b = t+d. Значит t и d являются корнями уравнения x2 -bx +a = 0. Но согласно предположению дискриминант этого уравнения b2-4a<0. Уравнение не имеет корней. Таким образом допущение не верно и при отрицательном дискриминанте многочлен a× (g (x)) 2+b×g (x) +1 неприводим.
3.2 Пример 2: волнистые числа
Назовем девятизначное число
волнистым числом первого типа, если
![]()
Например, число 162539581 волнистое число первого типа. Назовем девятизначное число волнистым числом второго типа, если
![]()
а) Найдите количество девятизначных волнистых чисел первого и второго типа.
б) Найдите формулу для вычисления количества волнистых п-значных чисел первого и второго типа.
Назовем девятизначное число
волнистым числом третьего типа, если
![]()
Назовем девятизначное число волнистым числом четвертого типа, если
![]()
а) Найдите количество девятизначных волнистых чисел третьего и четвертого типа.
б) Найдите формулу для вычисления количества волнистых п-значных чисел третьего и четвертого типа.
Предложите свои обобщения этой задачи и исследуйте их.
Решение
Лемма 1. Обозначим через f (n,k1,k2) - количество n-значных волнистых чисел первого типа, начинающихся с цифры k1 и заканчивающиеся на цифру k2, g (n,k1,k2) - количество n-значных волнистых чисел второго типа, начинающихся с цифры k1 и заканчивающиеся на цифру k2. Тогда
и
Также,
и
Доказательство. Рассмотрим n-значные волнистые числа первого типа.
Нетрудно заметить, как они получаются. Берутся все n-1-значные волнистые числа и, в зависимости от текущего знака (“<" или ”>”), дописывается каждому числу цифра, меньшая или большая последней, т.е. чтобы найти количество n-значных волнистых чисел, заканчивающихся на k, надо найти сумму всех количеств n-1-значных чисел заканчивающихся на цифры от 0 до k-1 или от k+1 до 9.Т. к. на каждом шаге мы корректно вычисляем волнистые числа, то нет необходимости знать всё число: все зависит от последней цифры.
Следовательно, можно составить рекуррентную формулу, которая будет корректно вычислять количество n-значных волнистых чисел первого типа начинающихся на цифру k1 и заканчивающихся на цифру k2.
Рассмотрим рекуррентную формулу для волнистых чисел первого типа.
Начальные её значения
, т.е. есть только по одному однозначному волнистому числу, начинающемуся на i и заканчивающемуся на i (
).
Пусть
, тогда по четности/нечетности i (
) определяем текущий знак “<” или “>”:
Если i-нечетное, то
является суммой всех количеств i-1-значные волнистых чисел первого типа, которые начинаются на k1 и у которых последняя цифра меньше k2.
