Оптические квантовые генераторы
Рефераты >> Физика >> Оптические квантовые генераторы

Практически в большинстве ионных аргоновых ОКГ использу­ется наложение внешнего продольного магнитного поля на разряд, приводящее к существенному увеличению мощности генерации. Маг­нитное поле создается соленоидами (см.^| на рис.84,а) или постоянными магнитами. Оно прижимает разряд к оси трубки,.уве-личивает концентрацию электронов в центре капилляра, уменьша­ет поток заряженных частиц на его стенки. Последнее уменьшает тепловые нагрузки на капилляр и увеличивает тем самым срок его службы.Напряженность магнитного поля имеет величину порядка 10° А/м.

Важное значение при эксплуатации и разработке аргоновых ОКГ имеет определение их оптимального режима работы, соответ­ствующего наибольшей выходной мощ­ности. Мощность генерации 'зависит от силы тока разряда, давления га­за, размеров разрядного капилляра, величины напряженности магнитного поля и т.д.

На рис.86 приведена зависи­мость выходной мощности ОКГ с раз­рядной трубкой диаметром 10 мм от давления аргона при разных величи­нах разрядного тока. Из рисунка видно, что существует оптимальное давление, соответствующее макси­мальной мощности. При малых давле-ниях концентрация ионов незначительна и мощность излучения оказывается небольшой. При больших давлениях концентрация ио­нов велика, но мала длина свободного пробега электронов и, сле­довательно, мала их энергия. Это ведет к снижению эффективно­сти возбуждения ионов при соударениях с электронами, вследст­вие чего инверсия, а значит, и мощность излучения получаютсянезначительными. Величина оптимального давления зависит от ди­аметра разрядной трубки. Она растет с уменьшением диаметра. Экспериментально установлено, что величина оптимального дав­ления рот в зависимости от диаметра трубки d определяется при jd = 100 А/см ( j - плотность тока разряда) соотношением Ропт = 6,5ct ~^, здесь d выражено в сантиметрах. Для реаль­но используемых трубок d = 0,1+1,5 см, ру^ = 100+4 Па.

Мощность генерации при токах выше порогового значения растет пропорционально квадрату силы тока. Квадратичная зави­симость мощности от тока характерна для всех аргоновых ОКГ. Она объясняется ступенчатым процессом механизма возбуадения ионов из основного состояния атомов. Лишь при очень больших плотностях тока ('>1000 А/см^) мощность излучения с увеличе­нием силы тока перестает расти, наступает насыщение и далее мощность уменьшается. Однако такого режима трудно достигнуть из-за разрушения разрядных капилляров. Насыщение мощности из­лучения с ростом оиды тока, по-ввдимому, связано с эффектом пленения излучения. Инверсия населенностей, как было уже по­казано, в аргоновых ОКГ обеспечивается в результате опустоше­ния нижнего рабочего уровня 3^48 интенсивными спонтанными переходами ионов в основное ионное состояние. Спонтанное из­лучение, распространяясь в плазме, частично поглощается не-возбухденными ионами, что приводит к переводу их с уровня Зр^ на уровень Зр4 4s. При большой концентрации ионов каждому спонтанному переходу Зр 4з •— Зр соответствует акт поглоще­ния, ведущий к возвращению иона в возбужденное состояние 3^45. Происходит как бы увеличение эффективного времени жизни час­тиц в Зр^д -состоянии, что ведет к уменьшению инверсии насе-ленностей и, как следствие этого, падению мощности генерации. Удельная мощность генерации вблизи режима насыщения достигает 2,5 Вт/см.

Большой практический интерес представляет зависимость мощ­ности генерации от диаметра разрядной трубки (рис.87). Из ри­сунка видно, что удельная мощность генерации растет с увели­чением диаметра разрядной трубки. Поэтому для получения боль­шой мощности выгоднее использовать разрядные трубки увеличен­ного диаметра (до 10+15 мм). Однако при этом встречаются труд­ности в получении равномерного разряда по всей площади трубки, требуются мощные катоды, обеспечивающие большие токи эмиссии (до сотен ампер).

В настоящее время с трубками диаметром 10 + +15 мм в аргоновом ОКГ достигнута мощность генерации 500 Вт.

При создании мощных аргоновых ОКГ возникают существенные трудности, связанные с распылением электродов и стенок разряд­ных трубок. Распыленные частицы, оседая на брюстеровы окна (или на внутренние зеркала), образуют поглощающий слой. В результа­те абсорбции излучения в поглощающем слое происходит термиче­ская деформация оптических элементов, что приводит к значитель­ной расходимости луча и падению выходной мощности. Поглощающий слой на поверхности окон и разрушение отражающих слоев зеркал резонатора полем излучения большой мощности являются основными препятствиями, которые ограничивают рост мощности аргоновых ОКГ непрерывного действия.

Существенное влияние на выходную мощность аргоновых ОКГ оказывает также аксиальное магнитное поле. Наложение продоль­ного магнитного поля приводит к спиральному движению электро­нов и ионов вокруг магнитных_силовых линий, что снижает ради­альную диффузию к стенкам капилляра, увеличивая концентрацию их на оси трубки. Уменьшение ионной бомбардировки облегчает тепловую нагрузку на стенки разрядной трубки и увеличивает срок ее службы. Экспериментальные исследования показывают, что с рос­том напряженности магнитного поля выходная мощность ОКГ увели­чивается, достигая максимума при некотором оптимальном значе­нии напряженности, а затем падает.

Рис.88 иллюстрирует зависимость мощности генерации от ве­личины напряженности магнитного поля при различных давлениях газа ОКГ с капилляром диаметром 4 мм, длиной 28 см, при силе тока 30 А. Видно, что с ростом давления ^/опт уменьшается. Ве­личина оптимальной напряженности также зависит от силы тока и диаметра разрядного капилляра. С ростом силы тока и давления hq „т уменьшается. Оптимальная, величина напряженности магнит­ного поля лежит в диапазоне от нескольких десятков тысяч до (2*3)- 1СГ3 А/м. Исследования показывают, что падение мощности генерации при полях напряженностью, большей оптимальной, когда образуется значительная концентрация заряженных частиц на оси разрядной трубки, связано главным образом с эффектом пленения резонансного излучения и ростом числа тушащих соударений ионов с электронами, приводящими к безызлучательной дезактивации верх­них рабочих уровней.

Как уже отмечалось, инверсия йаселенностей в дуговом арго­новом разряде обеспечивается для систем уровней, соответствую­щих электронным конфигурациям Зр 4р и Зр4S ионов аргона.По­тому при выполнении пороговых условий в аргоновом ОКГ мэхвт воз­никнуть генерация когерентного излучения на целом раде перехо­дов этой системы уровней.

В аргоновых ОКГ генерация наблидается на многих длинах волн, лежащих в пределах от фиолетовой (450 нм) до зеленой (530 мн) области. Наиболее интенсивная генерация идет на линии 488 нм, отвечающей переходу ^pгDocln — ^s^Pw • Незначитель­но ей уступает по интенсивности генерация на переходе ^Р^ю— — Чв^^с длиной волны 514,5 нм. В линиях 488 и 514,5 нм мо­жет заключаться соответственно до 45 и У?% общей мощности ге­нерации. Для этих линий обеспечиваются наибольшие величины ин­версии населенностей и соответственно большие коэффициенты уси­ления. Измерение усиления для ОКГ с капилляром 0,5 см при дав­лении 10 Па и плотности тока 600 А/см для перехода о А, = = 488 нм дает величину I3-IO"3 см"1, для перехода с A=5I4,5i»i-примерно 3,6-Ю"3 см"1.


Страница: