Получение оксидов урана
Рефераты >> Технология >> Получение оксидов урана

Все галогениды урана, кроме фторидов, гигроскопичны, подвергаются гидролизу. Наименее гигроскопичны соединения урана (III), более гигроскопичны тетрагалогениды и еще более подвержены гидролизу гексагалогениды.

Оксигалогениды. При действии свободных галогенов или галогенводородов на оксиды урана при определенных условиях нагревания образуются оксигалогениды урана. Они могут быть также получены окислением тетрагалогенидов кислородом при 150 °С. Оксииодид крайне неустойчив. Оксигалогениды UVI хорошо растворимы в воде. Оксигалогениды UIV образуются при взаимодействии UO2 и тетрагалогенидов урана при высокой температуре, а также при гидролизе тетрагалогенидов урана. Оксигалогениды представляют собой растворимые в воде соединения.

Гидрид UH3. Получается при действии паров воды на уран при 250°С или прямом взаимодействии элементов:

Положение равновесия зависит от температуры. Гидрид урана активен и служит исходным материалом для получения ряда соединений урана. Гидрид урана пирофорен. Растворами окислителей окисляется до иона UO22+. Гидрид урана растворим в соляной, азотной, горячей концентрированной серной, фосфорной и хлорной кислотах.

Карбиды. Уран образует три карбида стехиометрического состава UC, UC2 и U2C3. При непосредственном нагревании элементов в зависимости от взятых количеств образуются состава UC, UC2 или U2C3:

Карбид урана UC2 в измельченном состоянии пирофорен.

Комплексные соединения урана образуются с угольной, винной, лимонной, яблочной, молочной и другими органическими кислотами. В зависимости от концентрации адденда меняется соотношение комплексов различного состава. С ацетилацетонатом и другими дикетонами образуются растворимые в органических растворителях комплексы. Состав комплексных ионов может быть изображен формулой [U(CO3)n(OH)m]4-2m-n. В присутствии кислорода осуществляется переход в комплексный ион UVI.

В производстве широко применяется реакция комплексообразования уранил-иона с ортофосфорной кислотой:

где n = 1, 2, 3, 4, 5 и x = 0, 1, 2,…

Соли уранила образуют комплексные соединения с тиомочевиной. С теноилтрифторацетоном образуется комплекс UO2(TTA)2 . 2H2O. Получены также и другие комплексы урана.

II. ОКСИДЫ УРАНА. ИХ ХАРАКТЕРИСТИКА

Значение оксидов урана в его технологии

В результате аффинажа самыми различными способами уран получают в виде одного из таких соединений, как уранилнитрат, диуранат аммония, пероксид урана, уранилтрикарбонат аммония.

Операции превращения этих соединений в конечные продукты показаны на схеме:

UO2(NO3)2 . 6H2O Упарка

(NH4)2U2O7 UO3

Прокаливание Восстановление UO2

UO4 . 2H2O U3O8

(NH4)4[UO2(CO3)3]

U Металлотермия Обработка HF

UF4

UF6 Фторирование

Следовательно, оксиды урана UO3, UO2 и U3O8 – важнейшие промежуточные продукты уранового производства при получении фторидов урана и металлического урана.

Кроме того, основой ТВЭЛов современных ядерных реакторов многих типов служит диоксид урана, который обладает высокой коррозионной и радиационной стойкостью. Применение огнеупорного UO2 дает возможность получать в реакторах значительно более высокие температуры, чем при использовании обычных металлических ТВЭЛов. Для изготовления таких ТВЭЛов используют, как правило, диоксид урана, обогащенный изотопом уран-235. Химические свойства такого диоксида аналогичны обычному. К диоксиду, обогащенному изотопом уран-235, предъявляются повышенные требования как по чистоте, так и по структуре и физическим свойствам [1].

Система «уран–кислород». Оксиды урана

Система «уран – кислород» представляет собой одну из самых сложных двойных систем. Три оксида урана – диоксид UO2, закись-окись U3O8 и триоксид UO3 известны уже более ста лет. Исследования последних лет показали, что возможно существование монооксида UO, а также таких соединений урана с кислородом, как U4O9, U3O7, U2O5 и что эти соединения, как и три ранее известных оксида, не являются стехиометрическими, и в действительности существует разнообразие нестехиометрических форм. Было показано существование в системе U–O нескольких фаз (табл. 1).

Таблица 1. Возможные фазы в системе «уран–кислород»

Фазы

Плотность, г/см3

UO

13,63

UO2

10,96

U4O9

11,16

U3O7

_

U3O8

8,39

a-UO3

8,34

b-UO3

7,15

При изучении системы «уран–кислород» обнаружено несколько гомогенных областей с переменным составом урана и кислорода. Одна из таких областей лежит, например, между составами UO2 – UO2,25. Существование стабильной фазы монооксида урана не доказано.

Монооксид урана. Низший оксид урана встречается только в виде тонких пленок на уране или включений в металл. Это хрупкое вещество серого цвета с металлическим блеском. По различным данным, его плотность составляет 13,6 – 14,2 г/см3. Монооксид имеет кубическую решетку типа NaCl. По мнению некоторых исследователей, при обычных условиях в свободном состоянии UO не существует. Основная трудность ее получения связана с тем, что она устойчива только при высоких температурах. [1]


Страница: