Изучение возможности применения магнитных жидкостей для синтеза магнитных сорбентов
Рефераты >> Химия >> Изучение возможности применения магнитных жидкостей для синтеза магнитных сорбентов

Попытки получить устойчивые, высокомагнитные МЖ методами диспергирования, например ультразвуком, электроплазменным измельчением, измельчением вращающимся магнитным полем или электрораспылением желаемых результатов не дали. Этими методами не удалось достичь высокой дисперсности измельчаемых материалов. Они характеризуются весьма малой производительностью, длительностью и сложностью достижения высокой дисперсности измельчаемых материалов, а получаемые МЖ - невысокой устойчивостью и слабыми магнитными свойствами.

Важную роль в получении коллоидных систем играет пептизация высокодисперсных частиц, полученных тем или иным способом, в дисперсионной среде, метод пептизации заключается в переводе в коллоидный раствор осадков, первичные частицы которых уже имеют коллоидные размеры. Пептизация может осуществляться действием электролита или поверхностно-активного вещества на осадок, промывкой осадка или химическим взаимодействием вещества с осадком, в результате чего образуется электролит, придающий устойчивость частицам дисперсной фазы. Пептизация промывкой осадка сводится к удалению из него электролита, вызвавшего коагуляцию. В результате чего оставшийся двойной электрический слой утолщается, силы отталкивания начинают преобладать над силами притяжения и отделявшиеся друг от друга мицеллы в результате броуновского движения равномерно распределяются в дисперсионной среде, т.е. образуется коллоидный раствор. Пептизация электролитами идет за счет того, что ионы электролита могут достраивать кристаллическую решетку дисперсной фазы или, адсорбируясь на поверхности, создавать двойной электрический слой, обуславливающий устойчивость коллоидной системы. Пептизация поверхностио-активными веществами обуславливается взаимным отталкиванием гибких молекул ПАВ, адсорбировавшихся на поверхности коллоидной частицы.

Задача получения устойчивых и высокомагнитых МЖ успешно решается и с использованием методов конденсации.

1.2.2.2. Методы конденсации.

Конденсационные методы основаны на соединении отдельных молекул или ионов растворенного вещества в агрегаты коллоидных размеров. Образование коллоидных систем в результате конденсации можно рассматривать как процесс кристаллизации, который протекает в две стадии:

- возникновение зародышей (центров кристаллизации);

- рост зародышей до определенного размера кристаллов. Зародыши кристаллизации, как правило, образуются в результате осаждения растворенного вещества на чужеродных мельчайших пылинках, случайно оказавшихся в системе (гетерогенная конденсация). Необходимо отметить, что вводя определенное количество чужеродных зародышей, можно получить коллоидные системы с заранее заданной дисперсностью.

Рост кристаллов происходит в результате конденсации на них ионов или молекул вещества из раствора. Важно при получении высокодисперсных систем (золей), чтобы скорость образования зародышей была велика, а скорость роста кристалликов мала, так как лишь в этом случае образуется множество кристаллов коллоидных размеров. Если же наоборот скорость образования центров кристаллизации мала, а скорость роста кристаллов велика, то все выделившееся вещество конденсируется на небольшом числе зародышей и в результате образуется небольшое количество крупных кристаллов. Важно отметить, что в первом случае будут образовываться сравнительно монодисперсные системы, а во втором - полидисперсные. Очень существенное значение для получения коллоидов имеют условия реакции, то есть температура, концентрация реагирующих веществ, скорость и порядок смешивания растворов. Используя, например, сильно разбавленные растворы, охлаждая их и осторожно перемешивая можно, в принципе, вырастить монокристалл, а используя концентрированные растворы, интенсивно перемешивая и подогревая их - частицы коллоидных размеров.

Методами конденсации высокодисперсные частицы магнетиков могут быть получены в результате химических реакций почти всех известных типов: реакций обмена, восстановления, окисления, гидролиза и т.д.

Примерами методов конденсации являются: термическое разложение карбонилов металлов, электролиз металлов из растворов их солей, соосаждение солей под действием щелочи [55-63] и другие методы.

Примером конденсационных способов может служить метод получения магнитных жидкостей на углеводородной и кремнийорганической основе с металлами, разработанный авторами работ [64-70]. Метод основан на термическом разложении карбонилов металлов непосредственно в жидкости-носителе в атмосфере инертного газа и в присутствии стабилизатора. Это позволяет защитить образующиеся высоко дисперсные частички металлов от окисления, полностью сохранить их магнитные свойства и предотвратить коагуляцию, для успешного приготовления коллоидных растворов ферромагнетиков этим методом необходимо очень точно соблюдать баланс между жидкостью-носителем, стабилизатором и металлическими частицами. Изменяя режим получения (температуру, состав и процентное соотношение исходных компонентов) можно получить коллоиды, содержащие частицы металла размером от 20 до 300Å.

Разложением пентокарбонила железа Fe(CO)5 и дикобальтоктокарбонила Cо2(CO)8 Томасом были получены устойчивые коллоиды железа и кобальта в толуоле и хлорбензоле [66-68].

Аналогично авторами [65] получены магнитные жидкости на кремний-органических соединениях с железом. При разложении карбонилов металлов образуются высокодисперсные частички чистых металлов

Fe(CO)5 ↔ Fe + 5CO

Этот метод позволяет получать магнитные жидкости на чистых металлах. Недостатком этого способа является обильное выделение токсичного оксида углерода(II), а также большая реакционная способность получаемых чистых частиц металлов, что требует особых мер предосторожности. К тому же процесс должен протекать в герметичном реакторе, в атмосфере инертного газа и при высоких температурах, что создает свои сложности.

М.А.Луниной совместно с сотрудниками усовершенствован и успешно используется для получения металлических органозолей электроконденсационный метод [40, 71]. Преимуществом ЭК-метода является возможность получения практически любых металлов в виде золей, содержащих сферические частицы со средним радиусом от 1 до 30 нм. В основе ЭК-метода лежит принцип конденсации пересыщенного пара металла, возникающего при искровом разряде высокочастотного переменного тока между грубыми частицами металла, погруженными в жидкость.

Мозговой и Блум [72] для получения коллоидной суспензии железа в толуоле также использовали электроконденсационный метод. Ими была получена довольно устойчивая коллоидная система, однако весовая концентрация железа в ней составляла лишь около 3 %.

Большой интерес представляют собой электропроводящие жидкости. В качестве жидкости-носителя используют обычно ртуть, олово, легкоплавкие металлы и их сплавы (индий, галлий и др.). Способы получения таких жидкостей основан на методе термической конденсации и электролизе [73-77].

Авторами [75] для получения коллоидных растворов гадолиния в ртути использовался термический метод конденсации. Сплав железо-гадолиний испарялся в атмосфере аргона при пониженном давлении. Образующиеся аэрозольные частицы переводились в ртуть. Концентрирование взвеси проводили испарением ртути при механическом встряхивании суспензии с целью предотвращения роста частиц. В последующих работах [76] эти авторы использовали в качестве феррофазы сплав Fe-Ni. Электролиз проводился в электролизной ванне при рН = 9,25-9,5. Катодом служила свободная поверхность ртути. Для перевода образующихся частиц во взвесь ванна подвергалась вибрации с частотой 200 Гц. Полученные магнитные жидкости имели размер частиц 30-1000Å и как указывают авторы, обладали "хорошей намагниченностью и устойчивостью" в зависимости от процентного соотношения железа и никеля. Эмерсон получил электропроводные жидкости на основе железа в ртути совмещая методы электролиза, химического замещения и термической конденсации [77]. В нескольких других работах имеются лишь краткие сообщения о полученных электропроводных жидкостей на легкоплавких металлах и их сплавах, без описания методики получения и подробных характеристик. Основная трудность на пути создания таких жидкостей состоит в отсутствии эффективных методов их стабилизации.


Страница: