Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах
Рефераты >> Химия >> Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах

Рассмотрим убыль электронов только за счёт поглощения. За время Δt в единице объёма происходит (nvΔt)/lk столкновений электронов с частицами конденсированного углерода. При вероятности поглощения ß убыль электронов будет определяться соотношением Δn = - (ßnvΔt) /lk. В системе отсчёта, связанной с фронтом детонационной волны, оно примет вид

Δn/Δх = - (ßnv)/(ulk), где u – скорость продуктов детонации, а х – координата. Плотность электронов убывает по экспоненциальному закону на характерном расстоянии х0 = (ulk) /(ßv).

Если предложенная модель верна, то она позволяет оценить вероятность поглощения электронов конденсированными частицами

ß = (ulk)/(vх0) ≈ 10-8-10-7, вероятность оказывается действительно малой.

В [1] измерена электропроводность в детонационной волне в азиде свинца. Она оказалась того же порядка, что и при детонации тротила. Вполне возможно, что роль, аналогичную углероду, в таких веществах как азиды, играют металлы, имеющие низкий потенциал ионизации. В этом случае электроны могут возникать в результате термической ионизации атомов металлов, а рассеяние и поглощение их может происходить на макроскопических металлических частицах конденсированной фазы.

3.3 Электропроводность в неравновесных продуктах детонации

Объяснить высокие значения электропроводности в неравновесной зоне продуктов детонации оказывается возможным. Основанием для гипотезы о механизме неравновесной проводимости послужили эксперименты по исследованию сохраненных продуктов взрыва смеси гексогена и адамантана C10H16 . Углеродная структура адамантана напоминает структуру алмаза, но в случае адамантана углерод соединяется ещё и с атомом водорода. Интересно, что при ударном сжатии в сохраненных продуктах детонации были обнаружены чистые кристаллические алмазы. На основании этого можно сделать вывод о том, что при ударном сжатии рвутся преимущественно C-H связи. При этом молекула теряет атомы водорода, так как они легче чем атомы углерода. Далее предполагается образование высокой плотности положительно заряженных оторвавшихся атомов водорода – фактически протонов, которые быстро нейтрализуются в процессе химической реакции, но успевают внести свой вклад в проводимость неравновесной зоны продуктов детонации.

Оценим величину электропроводности, которую способны обеспечить оторванные протоны. Рассеивающими центрами будем считать атомы. Концентрация атомов n = 1023 см-3, длина свободного пробега l = 1/(nS0) ≈ 10-7 см , где S0 – сечение атома равное 1.55·10-16 см. Оценить электропроводность можно следующим образом –

,

где Nат - количество атомов в молекуле вещества, NH – количество атомов водорода в молекуле вещества, l – длина свободного пробега, e – заряд электрона, m – масса протона. Примем mv = (mkT)1/2 , где Т ≈ 3·103 К. Тогдаmv≈ 10-18 см·г·с, а значение электропроводности σ ≈ (NH/ Nат)·10 3 Ом-1∙см-1. Коэффициент (NH/ Nат) в расчете электропроводности дает характеристику молекулы.Для октогена (NH/ Nат) = 8/28 судя по структуре C4H8O8N8 , для гексогена C3H6O6N6 кооффициент (NH/ Nат) = 6/22. Видно, что этот коэффициент большой роли при оценке электропроводности не играет. Величина электропроводности порядка 10 3 Ом-1∙см-1 получена для случая, когда в проводимости участвуют все атомы водорода, и существенно превышает полученные в экспериментах значения электропроводности неравновесных продуктов детонации. Однако, данная модель может иметь место если учитывать, что лишь часть оторванных протонов участвует в проводимости. Такая модель связывает исчезновение высокой электропроводности с окончанием химической реакции, когда все протоны водорода нейтрализованы.

3.4 Вспомогательные исследования проводимости стеариновой кислоты

На рис.26 приведена осциллограмма эксперимента по измерению проводимости стеариновой кислоты. Стеариновая кислота – органическое соединение C18H36O2, порошкообразного типа на ощупь напоминающее воск. Методика эксперимента аналогична эксперименту по исследованию проводимости взрывчатого вещества при пересжатии. Внутрь цилиндрического измерительного электрода помещалось исследуемое вещество, в нашем случае стеариновая кислота. Остальной объем экспериментальной сборки заполнялся гексопластом.

Рассмотрим поведение осциллограммы. Детонационная волна касается цилиндрического электрода – на осциллограмме это сопровождается затухающими колебаниями. Далее детонационная волна достигает внутреннего электрода – напряжение, как и следовало ожидать, уменьшается, но медленно. Затем заметен резкий спад и выход напряжения на постоянное значение. Эта картина отображает процесс установления стационарного режима при нагружении стеариновой кислоты. Резкий спад – выход на стационарный процесс. По этому спаду можно оценить величину электропроводности, возникающую при сжатии стеариновой кислоты мощным взрывчатым веществом. За время t ≈ 0.6 микросекунды сопротивление изменилось на величину R ≈ 0.03 Ома при скорости детонации D = 7.6 км/с. Тогда σ ≈ 1/RDt.

Оценка дает значение σ ≈ 500 Ом-1∙см-1. Следует ометить, что в стеариновой кислоте содержится огромное количество водорода, который потенциально способен обеспечить полученную величину электропроводности, что в свою очередь подтверждает механизм протонной проводимости.

Заключение

В процессе работы выполнено следущее:

q Получено распределение электропроводности невозмущённых продуктов детонации насыпных октогена, гексогена, тэна при нормальной детонации с высоким временным разрешением;

q Получено распределение электропроводности невозмущённых продуктов детонации насыпного тротила и литого тротила при нормальной детонации с высоким временным разрешением;

q Получено распределение электропроводности невозмущённых продуктов детонации насыпных октогена, гексогена, тэна и тротила при пересжатой детонации с высоким временным разрешением;

q Выявлена структура зоны проводимости, состоящая из двух зон электропроводности: зоны высокой электропроводности и зоны электропроводности равновесных продуктов детонации. Показано, что зоны проводимости имеют различные механизмы электропроводности и пространственно разделены особенной зоной с крайне низким значением электропроводности;

q Предложен механизм электронной проводимости в равновесной зоне продуктов детонации;

q Предложен механизм протонной проводимости в неравновесной зоне продуктов детонации;

q Проведены постановочные эксперименты по исследованию проводимости органических веществ, необладающих детонационными свойствами, при ударно волновом нагружении, свидетельствующие в пользу протонного механизма электропроводности;


Страница: