Исследование твердых электролитов
Рефераты >> Химия >> Исследование твердых электролитов

Большой интерес представляет синтез смешанных дигалогенидов олова. Обычные методы синтеза, такие, как действие интергалогена ХУ (где X и У — галогены) на металл, совместная кристаллизация из раствора или сплавление SnX2 и SnУ2, привели к образованию смешанных галогенидов SnС10.5Вr1, ClI и SnBrI [44]. Никакое изменение условий синтеза не позволило получить котунитоподобное соединение SnС1Вг. Оно было синтезировано лишь при ударном сжатии смеси хлорида и бромида олова (П). Этими же авторами был получен монобромид меди при ударном сжатии при изучении системы СuВr2 + Си [45], что является примером синтеза соединений с понижением валентности солеобразующего атома. При этом обнаружено, что плотность и диэлектрическая проницаемость у ударно-синтезированного СuВr оказались больше, чем у стандартного образца: р. = 5,26 против 5,06 г/см3 и έ= 17,8 против 10,0. Фазовый переход из структуры сфалерита к вюрциту происходит при Т = 375С вместо 395°С. Параметр кристаллической ячейки у "сжатого" вещества 0,5643 км оказался меньше, чем у стандартного — 0,5690 нм. Методом динамического сжатия были получены также твердые растворы КС1 — КВr [46], RbС1 — СsС1 [47], NН4I — CsI [48] и NH4Br —CsBr [49]. В работе [50] был выполнен синтез сложных оксидов на основе ZnО2 под действием ударного сжатия (22 ГПа) и изучена кинетика твердофазных реакций с участием двуокиси циркония.

В последние годы большое внимание уделяется методу механохимических (трибохи-мическнх) реакций, позволяющему получать при комнатных либо умеренных температурах новые метастабильные состояния многих твердофазных материалов, для которых характерны полиморфные превращения [51]. Так, например, данный метод был применен для синтеза тернарных галидов АВ2Х4 (где А = Мg Мn, Zn; В = Li, Na; X = С1, Вr) [52].

2.2.3 Золь-гель технология

Золь-гель технология становится одной из наиболее ведущих для синтеза материалов ионики твердого тела [53-58]. С ее помощью можно получить новые виды тонкой керамики, пленки, оксидные стекла, неоргано-органические композиты, нанокомпозиты с уникальными электрофизическими свойствами. Она включает целый комплекс химических и физико-химических процессов, каждый из которых может существенно влиять на свойства конечных продуктов. Общими признаками процессов приготовления неорганических материалов в золь-гель технологии являются гомогенизация исходных составляющих в виде раствора, их перевод в золь и затем в гель при сохранении гомогенности с последующей сушкой. Стадия золь-гель перехода приводит к формированию неорганической структурной сетки и протекает в жидкости (обычно коллоидном растворе) при низкой температуре. Возникающее твердое тело представляет при этом двух- или многофазный гель [53,59].

Золь-гель технология может быть разделена на две группы различных способов получения "химического геля" (гидролиз и поликонденсация алкоксидов) и "физического геля" (гелирование неорганических золей). Основное различие заключается в исходном сырье: в первом случае — алкоксиды элементов, во втором — неорганические соли. В обоих случаях технология начинается с приготовления растворов, а затем идут операции гидролиза и поликонденсации. Достаточно устойчивый золь требуется готовить только в технологии получения "физического геля", в то время как в случае алкоксидов такая цель не ставится, хотя в какой-то момент образование частиц нанометровых размеров весьма вероятно. В указанных выше двух подходах различаются и свойства геля: образование "физического геля" — процесс, как правило, обратимый, а "химический гель" не поддается последующей пептизации [57].

Как известно, золь-гель технология позволяет получать большое число различных оксидных материалов [53, 54]. В этом случае алкоксиды металлов и неметаллов (общая формула M(OR), где М — Si, Al, Ti, V, Cr, Mo, W, Zr и т.д.; R — алкильная группа, в частности СНз, C2H5, С3Н7; n — степень окисления элемента М) подвергаются гидролизу и поликонденсации в растворе при комнатной температуре. Алкоксиды многих элементов являются жидкостями (к примеру, тетраэтоксиксилан Si(OC2H5)4), растворяются в спирте и других органических растворителях. При добавлении воды в спиртовой раствор алкоксида происходит его гидролиз. Это приводит к образованию гидроксилированных М—ОН-групп:

M(OR)n + Н20 - [M(OR)n-1(OH)] + ROH

и мономеров гидроксидов, которые выступают в качестве активных центров в реакции поликонденсации, протекающей, по всей видимости, по механизму алкоксилирования:

М—ОН + М—ОХ - " М—О—М + ХОН (X - Н либо R).

Реакции гидролиза и поликонденсации алкоксидов, как правило, протекают одновременно, что и приводит к формированию димеров и затем более сложных структур. Трехмерная сетка геля строится из очень мелких частиц размером 3-4 им (частицы золя), формируемых из димеров и их ассоциатов [60]. Структура и состав продукта зависят в большей мере от природы атома М и условий протекания процесса (регулирование соотношения Н20 к М—СЖ в реакционной системе и величины рН) [60-62].

Следует заметить, что "золь-гель химия" алкоксидов переходных металлов более сложна, так как атомы переходных металлов имеют не только высокую электрофильность, но и проявляют несколько координационных состояний [63]. Гели могут быть получены также из неорганических солей, но водная химия их осложнена процессами комплексообразования и гидролиза [57]. Сравнение двух вариантов золь-гель технологии показывает, что алкоголят-ный метод обеспечивает более высокую однородность состава материалов на всех стадиях процесса, вплоть до получения конечного продукта. Смешение идет на молекулярном уровне, что чрезвычайно важно при получении смешанных оксидов или других соединений, содержащих два или более металла либо металлы и неметаллы. Этот факт особенно важен при синтезе ТЭЛ на основе гетеровапентных твердых растворов. Синтез же аналогичных материалов другим методом (технология "физического геля" из неорганических солей) становится более сложной задачей, так как для получения золей смешанных оксидов в каждом случае требуется разработка специальных методик. К тому же объединение золей разного состава часто приводит к гетерокоагуляции и другим эффектам, затрудняющим процесс гелирования.

При образовании геля первичные частицы формируют пространственную сетку, в которой иммобилизована жидкая фаза. Механизм гелеобразования достаточно сложный. В ряде работ с позиции фрактальной геометрии обсуждается возможность реализации процесса кластер — кластер диффузионноограниченной агрегации [53, 64].

Гели склонны к упорядочению уже в процессе их старения (рис. 11.2.2). При старении наблюдается продолжение процесса поликонденсации (пока сохраняются группы М—ОН), проявляется синерезис, вызывающий самопроизвольную усадку гель-сфер, выделяется часть жидкости из пор и наступает огрубление пространственной сетки геля за счет процессов растворения и переосаждения вещества, составляющих первичные частицы разных размеров [53]. Результаты старения проявляются существенно на стадии сушки гель-сфер — очень важной операции золь-гель технологии. Сушка сопровождается значительной усадкой, повышением плотности упаковки первичных частиц и понижением удельной поверхности материала. В производстве керамики по золь-гель технологии используются специальные химические агенты, контролирующие высушивание [65]. К ним можно отнести, например, формамид (NH2СНО) и щавелевую кислоту (Н2С2О4). В первом случае получают крупнопористый ксерогель, во втором — мелкопористый.


Страница: