Обозначение констант равновесия межлигандного обмена хелатных комплексов экстрационно-фотометрическим методом
Рефераты >> Химия >> Обозначение констант равновесия межлигандного обмена хелатных комплексов экстрационно-фотометрическим методом

Из таблицы 3 видно, что в экстрактах комплексов металлов с PAN обмен почти полностью проходит в комплексе меди (идет полное разрушение), а в комплексе никеля он практически не происходит.

При изучении межлигандного обмена в экстрактах комплексов металлов с PAN на оксихинолин удобно оценить эффективность используемых эмпирических оценок степени протекания реакций обмена. Сопоставляя эти две системы, целесообразно проверить насколько оправдано использование констант образования нейтральных хелатных комплексов при априорной неколичественной оценке возможности межлигандного обмена (данные оценки представлены в таблице 7, что помещено в приложении А).

Константы реакции обмена для Ni и Cu

M(PAN)2 + 2Ox M(Ox)2 + 2PAN

приведенные в таблице 4, измерены следующим образом. По светопоглощению комплексов с PAN определяли их концентрацию и вычитанием ее с общей концентрации металла находили концентрацию M(Ox)2. Из начальных концентраций реагентов c(PAN) и c(Ox) находили их равновесные концентрации, учитывая расход на комплексообразование, и рассчитывали подставляя значения всех концентраций

Таблица 4 Результаты определения

Ион металла

Cu(II)

24,55 (из1-й серии)

1,39

Ni(II)

0,025 (из 2-й серии)

-1,60

Так как было проведено всего 2 серии измерений, то эти результаты не могут быть представлены как справочные данные. Однако в пределах тех интервальных значений констант, приведенных в литературе, они могут быть использованы для ответа на вопрос – «Идет обмен, или нет в данных системах?».

После этого можно сделать заключение о возможности совместного определения никеля и меди фотометрическим методом с предварительным экстракционным концентрированием и отделением с помощью PAN и оксина, так как спектры панатов этих металлов не накладываются (рис 2.1, ст. 19), и что есть возможность почти полного маскирования влияния меди оксином (это видно из значений констант обмена).

3 Техника безопасности

3.1 Общие положения

При работе в химической лаборатории приходится иметь дело с кислотами, щелочами, горючими жидкостями, с взрывоопасными, легковоспламеняющимися, ядовитыми и едкими веществами, сильными источниками света, а также с работой и монтажом аппаратуры из стекла. Неосторожное и неосмотрительное обращение с вышеуказанными веществами и лабораторным имуществом может легко привести к несчастным случаям с тяжелыми последствиями, а также к пожарам и различного рода травмам - отравлениям, ожогам, порезам и т.д. Поэтому знание свойств химических веществ, умелое обращение с ними и строжайшее соблюдение всех необходимых мер предосторожности являются обязательным требованием для всех работающих в лабораториях.

Несчастные случаи при работе в лабораториях чаще всего происходят вследствие:

–тепловых ожогов при работе с пламенем горелок, раскаленными предметами, горячими жидкостями, и ожогов в результате воспламенения газов и паров;

–ожогов едкими химическими веществами: азотной, серной, уксусной, плавиковой, хромовой, пикриновой кислотами и едкими щелочами;

–ожогов глаз газами и брызгами кислот, щелочей, действием раздражающих или ядовитых веществ (аммиака, сероводорода, спирта и т.д.);

–отравление ядовитыми веществами;

–порезов и механических ранений, получаемых при неправильном обращении со стеклянной посудой;

–взрывов, получающихся при воспламенении взрывчатых и органических смесей в лабораторных аппаратах или при скоплении газов в сосудах, а также связанных с ними ожогов и ранений.

3.2 Общие правила безопасности

1. Опасные работы должны выполняться не менее чем двумя работниками, чтобы обеспечить возможность оказания помощи.

2. Рабочие места в лаборатории должны содержаться в чистоте, при выполнении работы необходимо соблюдать точность и правила техники безопасности (далее по тексту ТБ).

3. Запрещается принимать пищу в рабочих помещениях, пользоваться для еды и питья рабочей химической посудой и хранить продукты питания в ящиках с реактивами.

4. Запрещается нюхать и пробовать на вкус различные неизвестные вещества и растворы.

5. Все работы с вредными веществами (хлор, бром, фосфор, цианистые соединения и т.д.) производить под тягой при спущенных рамах.

6. Работу с едкими и горючими жидкостями, дробление твердого каустика и т.д. производят только в предохранительных очках, резиновых перчатках, резиновом переднике или в плотной спецодежде.

7. Запрещается набирать ртом в пипетку жидкости.

8. Вредные или взрывчатые газы, выходящие из аппаратуры, должны нейтрализоваться.

9. Запрещается оставлять без присмотра открытыми краны газовых горелок и горящие горелки.

12.При наличии запаха газа, применяемого для горелок, в помещении не зажигать огня и не включать электроплиток до полного проветривания помещения, устранения мест пропускания газа.

13.По окончании лабораторных работ производится тщательная уборка рабочих мест. Газ, вода, электронагревательные приборы выключаются при уходе работника с рабочего места за 30 минут.

14.Запрещается хранение легколетучих жидкостей (эфир, ацетон, хлороформ, хлорангидриды кислот, олеум и т.д.) в закрытой посуде из тонкого стекла.

15.Загромождать вытяжные шкафы посудой, приборами и лабораторным оборудованием, не связанным с проводимой в данное время работой запрещается.

16.Запрещается вносить пористые, порошкообразные и другие подобные им тела (активированный уголь, губчатые материалы, пемза) в горючие жидкости нагретые выше 100°С, во избежание бурного вскипания и выброса.

3.3 Опасные вещества, что использовались в работе

3.3.1 Хлороформ

В данной работе хлороформ использовался, как растворитель. Являет собой наркотик, действующий токсически на обмен веществ и внутренние органы, в особенности на печень. Действие его сходно с ССl4, но слабее, что, возможно, связано с меньшей способностью к образованию свободных радикалов. При высоких концентрациях – наркоз. Порог человеческого восприятия запаха 0,0003 мг/л. Ясно ощутимый сладковатый запах при 0,02 мг/л. Наркотическая концентрация, вызывающая изменение скорости развития рефлекторного мышечного напряжения (при коленном рефлексе), 0,25 – 0,5 мг/л при 40-минутиом вдыхании [11].


Страница: