Переработка полимеров
Рефераты >> Химия >> Переработка полимеров

Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме пММп (рис.2), где М — мо­лекула мономера, Мп — макромолекула, состоящая из мономер­ных звеньев, п — степень полимеризации.

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент — реакцию полимеризации, а благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционно-способные молекулы термореактивных полимеров могут образоваться более простым и естественным путем — посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рис. 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах.

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи. Я не буду особо заострять внимание на всех этих продуктах, расскажу лишь о самых широко используемых. Необходимо показать, насколько велика потребность полимерных материалов в наше время, а, следовательно, и важность их переработки. Иначе проблема была бы просто необоснованна.

1.2 ПЛАСТИКИ

Слово "пластик" происходит из греческого языка и обозначает мате­риал, который может быть спрессован или сформован в любую форму по выбору. Согласно этой этимологии даже глину можно было бы наз­вать пластиком, однако в действительности пластиками называют только изделия из синтетических материалов. Американское общество испыта­ний и материалов определяет, что такое пластик, следующим образом: "это любой представитель широкого круга разнообразных материалов, полностью или частично органических по составу, которому можно придать необходимую форму при воздействии температуры и (или) давления".

Известны сотни пластиков. В табл. 1 представлены основные их виды и приведены отдельные представители каждого из видов. Следует отметить, что в настоящее время не существует единого способа описания всего разнообразия пластиков ввиду их многочисленности.

Таблица 1. Основные типы пластиков

Тип

Типичные представители

Тип

Типичные представители

Акриловые пластики Аминопластики

Полиметилметакрилат (ПММА) Полиакрилонитрил (ПАН) Мочевиноформальдегидная смола Меламиноформальдегидная смола

Полиэфиры

Ненасыщенные полиэфирные смолы

Полиэтилснтерефталат (ПЭТФ) Полиэтилснадипат

Целлюлозы

Этилцеллюлоза

Ацетат целлюлозы

Нитрат целлюлозы

Полиолефины Стирольные пластики

Полиэтилен (ПЭ) Полипропилен (ПП) Полистирол (ПС)

Эпоксидные пластики

Эпоксидные смолы

 

Сополимер стирола с акрилонитрилом

Фторопласты

Политетрафторэтилен (ПТФЭ) Поливинилиденфторид

 

Сополимер акрилонитрила со сти­ролом и бутадие­ном (АБС)

Фенопласты

Фенолоформальдегидная смола Фенолофурфуроловая смола

Виниловые пластики

Поливинилхлорид (ПВХ) Поливинилбутираль

Полиамидные пластики (найлоны)

Поликапролактам (ПА-6) Полигексам етиленадипамид (ПА-6,6)

 

Сополимер винилхлорида с винилацетатом

Первым термопластом, нашедшим широкое применение, был целлулоид — искусственный полимер, полученный путем перера­ботки природного — целлюлозы. Он сыграл большую роль в тех­нике, особенно в кинематографе, но вследствие исключительной пожароопасности (по составу целлюлоза очень близка к бездым­ному пороху) уже в середине XX в. ее производство упало почти до нуля.

Развитие электроники, телефонной связи, радио настоятельно требовало создания новых электроизоляционных материалов с хо­рошими конструкционными и технологическими свойствами. Так появились искусственные полимеры, изготовленные на основе той же целлюлозы, названные по первым буквам областей примене­ния этролами. В настоящее время лишь 2 . 3% мирового про­изводства полимеров составляют целлюлозные пластики, тогда как примерно 75% — синтетические термопласты, причем 90% из них приходится на долю только трех: полистирола, полиэтилена, поливинилхлорида.

Полистирол вспенивающийся, например, широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать вре­менную изоляцию от воздействия тепла, излучаемого другими эле­ментами, или низких температур и устранить их влияние на элек­трические свойства, следовательно, — в бортовой иСВЧ-аппаратуре.

1.3 ЭЛАСТОМЕРЫ

Обычно эластомеры называют каучуками. Воздушные шары, подошвы ботинок, шины, хирургические перчатки, садовые шланги – это типичные примеры изделий из эластомеров. Классическим примером эластомеров является природный каучук.

Макромолекула каучука имеет спиральное строение с периодом идентичности 0,913 нм и содержит более 1000 изопреновых остатков. Строение макромолекулы каучука обеспечивает его высокую эластичность – наиболее важное техническое свойство. Каучук обладает поразительной способностью обратимо растягиваться до 900% первоначальной длины.

Разновидностью каучука является менее эластичная гуттаперча, или балата, - сок некоторых каучуконосных растений, произрастающих в Индии и на Малайском полуострове. В отличие от каучука молекула гуттаперчи короче и имеет транс-1,4-строение с периодом идентичности 0,504 нм.


Страница: